검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 113

        102.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        Recently, the Ministry of Industry has made efforts to expand renewable energy by 2030, and the Ministry of Environment has sought to revitalize solid fuels from livestock manure, which is a type of bio-energy source, such as reviving laws to activate solid livestock fuels. However, the operating costs of fuel-manufacturing facilities must be reduced to activate solid livestock fuels. The proper dryer must be selected to reduce the drying cost, which comprises the majority of the operating expenses. Laboratory-scale experiments were conducted to confirm the possibility of drying cow manure, the feasibility of utilizing waste heat and the existence of an adhesion solution. Some adhesion phenomena were detected from the disk-dryer results. However, this phenomenon disappeared when the water content of the cow manure was below 50%. A water content of 41% was used to confirm this adhesion phenomenon in the cow manure. Because of the high viscosity of cow manure, a recycling method had to be applied through the disk to match the water content in the dryer. A drying test with a duct rotary dryer confirmed that waste heat that is generated from power plants can be utilized to lower the moisture content of solid fuels in livestock waste to 20%.
        103.
        2017.11 서비스 종료(열람 제한)
        지난 2008년에 발표된 가축분뇨 배출원단위 산정결과에 따르면 한우는 1일 약 8 리터의 분과 5.7 리터의 뇨를 배출하고 젖소는 각각 19.2 리터와 10.9 리터의 분과 뇨 그리고 7.6 리터의 세정수를 배출한다. 가축분뇨처리와 관련된 정책방향은 발생된 분뇨를 최대한 자원화하고 부득이한 경우에 정화 등의 방법을 적용하여 처리하는 것이다. 가축분뇨 자원화방법은 퇴비화와 액비화 그리고 에너지자원화로 구분될 수 있다. 가축분뇨 에너지자원화 방법은 지금까지는 혐기소화에 의한 바이오가스화가 주를 이루어 왔으나 최근 들어서 고체연료화에 대한 관심이 높아지고 있다. 목재펠릿, 고형연료나 Bio-SRF 또는 가축분뇨 고체연료는 직접연소원으로 사용되기 때문에 가열과정에서의 특성 분석에 대한 연구가 다방면으로 진행되어지고 있다. 본 연구에서는 우분 펠릿을 대상으로 하여 열분석기를 이용한 가열과정을 거치는 과정에서 나타나는 특성을 분석하였다. 실험온도는 20℃ 에서부터 800℃ 까지 범위를 설정하였으며 승온은 10℃/mim 수준으로 하였다. 샘플 10 g ± 0.2 mg을 취하여 가열하였고 가스(Protective + Purge Gas) 유량(N2 and CO2)은 60 mL/min 수준으로 하였다. 적용온도 20℃ 부터 130℃ 까지 사이에서 발생한 질량변화는 한우 분에 포함되어 있는 수분의 양에 해당하며 그 양은 한우 분 시료 전체 무게의 15% 수준에 달하는 것으로 나타났다. 가열온도 20℃부터 280℃까지는 질량변화가 없는 것으로 보아 한우 분의 경우 280℃ 까지 열적으로 안정한 것으로 판단된다. 이 결과는 한우 분의 연소 시 표면온도가 280℃에 이르기 전까지는 연소가 이루어지지 않는 것으로 해석할 수 있다. 280℃부터 450℃에서의 질량 변화는 한우 분에 존재하는 휘발성물질(VOCs)의 기화에 기인한 것으로 판단되며 이때 질량변화를 시간에 따른 속도로 변환했을 경우 330℃에서 VOCs 발생량이 최대치를 나타낸 것으로 분석되었다. 젖소 분의 가열실험 결과도 한우 분과 비슷한 특성을 보였다.
        104.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The present study was conducted to investigate effect of dietary protected amino acid on milk yield and composition in dairy cow using meta-analysis. Total 21 research papers were employed in analysis, and mixed model was used for the analysis of effects. Effect of protected methionine (PM) and combination of protected methionine and lysine (PML) were investigated under two different levels of dietary crude protein (CP, <18% and >18%). For performance of dairy cow, milk yield, milk composition including milk fat and protein content and yield and 4% FCM (fat corrected milk) production were used for analysis. In case of milk yield, a trend of increment was found at PM supplementation at low CP (P=0.055). However, the effect of PM at high CP was detected as not significant (P>0.05). In case of milk protein, inclusion of PM at low CP showed significant decrement (P<0.05). However, there was no significant effect of MP on milk protein at high CP (P>0.05). Supplementation of MP at high CP level showed significant increment of milk fat (P<0.05). MP supplementation represented significant increment of 4% FCM production (P<0.05) regardless of dietary CP levels. Effects of PML on milk yield and composition at both of low and high dietary CP were not significant in this study. However, it seem to be that there was a possible positive effect of MPL application at high dietary CP on performance of dairy cow.
        105.
        2015.05 서비스 종료(열람 제한)
        Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor(SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35℃). The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 days and its corresponding OLRs of 4.27 kgVS/m³-day. The optimum ranges of biogas and methane production rates were 1.47 volume of biogas per volume of reactor per day(v/v-d) and 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07-0.09 and 0.38-0.43, respectively, that were greatly stable in operation. The Total Volatile Solids(TVS) removal efficiency based on the biogas production was 45.2% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160 mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
        106.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor (SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35oC). The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 ~ 35 days and its corresponding OLRs of 3.5 ~ 4.3 kgVS/ m3-day. The optimum ranges of biogas and methane production rates were 1.36 ~ 1.47 volume of biogas per volume of reactor per day (v/v-d) and 1.0 ~ 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07 ~ 0.09 and 0.38 ~ 0.43, respectively, that were greatly stable in operation. The Total Volatile Solids (TVS) removal efficiency based on the biogas production was 39 ~ 45% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
        107.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Anaerobic mesophilic batch tests of dairy cow manure, dairy cow manure/saw dust mixture and dairy cow manure/ rice hull mixtures collected from bedded pack barn were carried out to evaluate their ultimate biodegradability and two distinctive decay rates (k1 and k2) with their corresponding degradable substrate fractions (S1 and S2). Each 3 liter batch reactor was operated for more than 100 days at substrate to inoculum ratio (S/I) of 1.0 as an initial total volatile solids (TVS) mass basis. Ultimate biodegradabilities of 37 ~ 46% for dairy cow manure, 32 ~ 40% for dairy manure/saw dust mixture and 31 ~ 38% for dairy cow manure/rice hull mixture were obtained respectively. The readily biodegradable fraction of 90% (S1) of dairy manure BVS (So) degraded with in the initial 29 days with arange of k1 of 0.074 day−1, where as the rest slowly biodegradable fraction (S2) of BVS degraded for more than 100 days with the long term batch reaction rate of 0.004 day−1. For the dairy manure/saw dust mixture and dairy manure/rice hull mixture, their readily biodegradable portions (S1) appeared 71% and 76%, which degrades with k1 of 0.053 day−1 and 0.047 day−1 for an initial 30 days and 38 days, respectively. Their corresponding long term batch reaction rates were 0.03 day−1.
        108.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        본 연구는 가축의 축사에 깔짚으로 이용되는 톱밥을 수준별(0(CSD0구), 10(CSD10구), 20(CSD20구), 30(CSD30구) 및 40%(CSD40구))로 우분과 혼합한 다음 부숙기간 중의 이화학적 성상 변화가 지렁이 생존에 미치는 영향을 조사함으로써 vermicomposting을 이용한 가축분의 친환경적 처리에 기초자료로 이용하고자 실시되었다. 그 결과를 요약하면 다음과 같다. 부숙이 경과함에 따라 3주부터 모든 구에서 지렁이의 생존이 가능하였다. 처리구별 탄질비는 톱밥 혼합구가 CSD0구 보다 유의하게 높았다(p<0.05). 지렁이가 생존하기 시작한 3주차의 탄질비는 23.26~61.05로 나타났다. 부숙이 경과함에 따라 pH와 전기전도도는 CSD0구에서 가장 높았고, 톱밥의 혼입 비율이 높을수록 pH와 전기전도도는 낮은 경향이었다. 지렁이가 생존하기 시작한 pH와 전기전도도는 각각 7.4~7.7과 0.28~1.17mS/cm으로 나타났다. 이상의 결과를 종합해 보면 우분에 다양한 수준의 톱밥을 혼합하여 부숙시켰을 경우 이화학적 성상 변화는 모두 지렁이 생존이 가능한 범위로 나타났으나, 우분의 효율적인 지렁이 퇴비화를 위해서는 톱밥 혼입 비율에 따른 지렁이의 생육과 증식 조사를 위한 시험이 필요하다고 사료되어 진다.
        109.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effect of DDGS hydrolysate (H-DDGS) and rumen-protected lysine-choline complex (RPLC) on milk production and blood metabolites in dairy cows. Feeding trials was performed to latin-square design using the 4 mid-lactational cows for 8 weeks, and treated with T1 (H-DDGS 1.1 kg), T2 (H-DDGS 0.73 kg + RPLC 0.15 kg), T3 (H-DDGS 0.37 kg + RPLC 0.30 kg) and T4 (H-DDGS 0.37 kg + RPLC 0.15 kg) according to the content of protein source. Dry matter intake (DMI) of TMR and average weight showed no significant difference between treatments. The milk production of T1, T2 and T4 were significantly higher than T3 treatment (p < 0.05), and milk/DMI efficiency tend to increase in the T1. Milk components showed no significant difference between treatments, however, the milk protein of T2 increased to 0.15% than T1. Also blood metabolites showed no significant difference between treatments. But T-CHO level numerically represented a lower trend in the treatments of adding to RPLC compared with T1. This result suggests that the high level (1.1 kg) of H-DDGS is expected to improve the feed utilization without the negative impact on weight gain, feed intake and milk production as the lactation stage of dairy cows proceeds, and 0.15 kg of RPLC under the same feeding conditions of H-DDGS may be useful on fat metabolism.
        110.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        A stabilization/solidification (S/S) process for lead (Pb) contaminated soils was evaluated using waste cow bone containing apatite like compounds. Soil samples obtained form firing range were treated with waste cow bone. The effectiveness of stabilization was evaluated based on the Korean Standard Leaching Test (KSLT) and soil pH. The leached concentration reduced with increased in dose of waste cow bone. Overall, the KSLT results showed that Pb concentration in soils are significantly affected by amount of waste cow bone. When soil amended with 20 % of waste cow bone, less than 0.1 mg/kg was leached, and soil pH was increased from 6.5 to 8.4. Same results were obtained when finer waste cow bone was applied. The reachable concentration of Pb in soil showed in inversely proportional to solid/liquid ratio. Aging periods indicate improving mix design was applied. Relatively high lead concentrations was observed at the first 1 days, however leaching profile are reduced significantly over time for all mix designs.
        113.
        1999.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        김치의 향미개선 및 게껍질 분말 첨가김치의 부미를 제거하기 위한 향미개선제로서 우골추출물의 첨가효과를 검토하였다 우골추출물은 김치의 숙성중 pH와 산도, 총균수, 젖산균비, Leuconostoc과 Lactobacilli의 수에는 큰 영향을 미치지 못하였으나 산미와 김치냄새를 감소시키고 종합적 맛을 개선시키는 향미 개선제로서의 역할을 하였다. 또 우골추출물(0.03%)을 게껍질분말(1.5%)과 함께 첨가할 경우는 게껍질분말만을 첨가한 경우보다 높은
        6