검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 oC for various times. X-ray diffraction results show that nitridation begins at 500 oC, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 oC. And, at temperatures higher than 900 oC, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 oC, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.
        4,000원
        2.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a 90o glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at 0o. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.
        4,000원
        3.
        2014.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Metallic Cr film coatings of 1.2μm thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in NH3 gas flow conditions between 400 and 900˚C. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at 500˚C and with further increases in annealing temperature not only chromium nitrides (Cr2N and CrN) but also chromium oxide (Cr2O3) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above 800˚C, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to 900˚C, while the nitrogen concentration was increased to 42 at%.
        4,000원
        4.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A non-volatile resistive random access memory (RRAM) device with a Cr-doped SrZrO3/SrRuO3 bottom electrode heterostructure was fabricated on SrTiO3 substrates using pulsed laser deposition. During the deposition process, the substrate temperature was 650˚C and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped SrZrO3 film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped SrZrO3 film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped SrZrO3. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped SrZrO3 perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of 100-200 Ω and a typical OFF state resistance of 1-2 kΩ, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.
        4,000원
        5.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped SrZrO3 perovskite thin films were deposited on a SrRuO3 bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the SrZrO3:Cr perovskite and the SrRuO3 bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than 102. A pulse test showed the switching behavior of the Pt/SrZrO3:Cr/SrRuO3 device under a pulse of 10 kHz for 104 cycles. The resistive switching memory devices made of the Cr-doped SrZrO3 thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.
        4,000원
        11.
        1998.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        RF magnetron sputtering법으로 Cr을 하지층으로 하여 CoPrCr 자성층을 성막한 후 보호층으로 SiO2를 증착한 Cr/CoPtCr/SiO2 다층박막을 상온에서 제조하여 자기적 성질을 조사하였다. Cr 하지층 두께가 증가함에 따라 보자력이 증가하다가 거의 일정한 값을 얻었으며 최대 보자력값은 860 Oe였다. 보자력의 증가원인은 자성상의 면내 배향화와 자성 결정립간의 자기적인 분리에 의한다고 생각된다. 시편을 각 온도별로 열처리 함으로써 보자력이 크게 증가하였으며, 550˚C에서 1시간 열처리한 박막의 보자력은 1650 Oe였다.
        4,000원
        12.
        1997.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SiO2/CoNiCr/Cr 합금 박막을 RF magnetron sputtering 법으로 Cr의 두께를 변화시키면서 제조하였다. 제조된 박막을 진공 열처리하여 열처리 온도에 따른 포화자화, 보자력, 각형비를 조사하였다. SiO2/CoNiCr/Cr 합금 박막에서 포화자화 값은 Cr 하지층의 두께가 증가함에 따라 감소하고 보자력은Cr 하지층의 두께가 증가함에 따라 증가하였다. 이러한 박막의 포화자화 값은 600 emu/cc, 최대 보자력은 550 Oe를 나타내었다. SiO2/CoNiCr/Cr(1700Å) 합금 박막에서는 열처리 온도가 증가함에 따라 포화자화 값은 급격히 감소하고 보자력은 증가하였다. 열처리 온도가 650˚C에서 포화자화 값은 as-deposited상태보다도 1/10로 감소하였고 보자력은 1600 Oe로 최대값ㅇ르 나타내었다. Cr 하지층의 두께와 열처리 온도의 증가에 따른 포화자화의 감소는 하지층에서 자성층으로 Cr이 확산하므로써 자기 모멘트의 감소에 의한 것으로 판단된다. 또한 보자력의 증가는 박막 면에 수직한 방향으로 급격한 결정 성장에 기인한 것이다.
        4,000원