최근, 큰 처짐과 다수의 균열을 동반하는 유사연성 거동과 부식에 대한 높은 내구성의 특징을 가진 FRCM(Fabric-Reinforced Cemenetitious Matrix) 복합체에 대한 관심이 증가하고 있다. 철근콘크리트 부재에 대해 다양한 장점을 지닌 FRMC 복합체를 적용할 경우 전단내력의 증대를 예상할 수 있으며, 이를 통해 내진성능이 요 구되는 철근콘크리트 구조물에 효과를 기대할 수 있다. 본 연구에서는 FRCM 복합체가 보강된 철근콘크리트 기둥에 대해 정적 반복가력 실험을 수행하고, 그 거동을 평가 하였다. 철근콘크리트 기둥은 직사각형 형상으로 단면의 크기가 300 × 300 mm이고, 순 높이는 800 mm로 제작되었다. 정적 반복가력 실험은 설정한 가력패턴에 따라 변위제어를 통해 횡 하중을 가력하 였고, 초기 축력은 기둥 용량의 10 %로 적용하였다. 정적 반복가력 실험 결과, 무보강 실험체 대비 약 27.33 %의 증진된 강도를 나타내었으며, 최대 강도 발현 시 층간변위비가 무보강 실험체 대비 약 187.6% 높게 나타냄에 따라 FRCM 복합체가 적용된 철근콘크리트 기둥의 높은 연성 거동을 확인 할 수 있다. 다만, FRCM 복합체를 실제 구조물에 적용하기 위해서는 추가적인 설계인자 개발을 통해 안 정성 및 신뢰성을 확보하는 것이 필수적이라고 판단된다.
This study investigated the rocking behavior of unreinforced masonry walls and wall piers under cyclic loading. Based on the benchmark tests, the characteristics of load-deformation relations in masonry walls with rocking failure were captured, focusing on observed deformation modes. The rocking strengths of masonry walls (i.e., peak and residual strengths) were evaluated, and the effects of opening configurations on the masonry wall strength were examined. The deformation capacity of the rocking behavior and the hysteresis shape of the load-deformation relations were also identified. Based on the results, modeling approaches for the rocking behavior of masonry walls were discussed.
The columns of older reinforced concrete (RC) buildings generally have limited reinforcement details. Thus, they could be vulnerable to earthquake ground motions, leading to partial or complete building collapse. In this study, high-performance fiber-reinforced cementitious composite (HPFRCC) was applied to RC columns to improve their seismic behavior. Experimental tests were conducted with two full-sized specimens with limited reinforcement details, including short lap splices, while unidirectional loadings were applied to the specimens. The seismic behavior of RC columns was substantially improved by using HPFRCC.
PURPOSES : The purpose of this study was to suggest a quantitative trend of the daily and seasonal cyclic movement of transverse crackwidth based on measurements in CRCP(Continuously Reinforced Concrete Pavement) within the first year of construction.
METHODS : Crack gauges were installed in eight normal cracks, two induced cracks, and two construction joints of newly constructed CRCP. Crack width movements were continuously collected for about a year to investigate the cyclic behavior after construction. The daily and seasonal crack width movements were quantitatively analyzed and compared.
RESULTS: Crack width movement in hot weather was relatively less than in cold weather. As a result of frequency analysis of the daily cyclic behavior, it was revealed by measurement that the minimum crack width from 2 p.m. to 4 p.m. was caused by expansion of the concrete; and that the maximum width from 6 a.m. to 8 a.m. was caused by contraction. Average crack width movements were calculated for every month and showed seasonal cyclic behavior. Maximum crack width was measured from December to January. Average crack width was investigated from March to April. Daily crack width movement in relation to concrete temperature was calculated from -0.00017 to -0.03844 mm/℃ and showed gradual decrease in absolute value with time caused by change in the crack spacing. It was found that the relationships between the monthly average crack width and concrete temperature are from -0.004 to -0.012 mm/℃.
CONCLUSIONS : Crack-width movement shows a daily and seasonal cyclic behavior. Crack-width measurement in any time or season will have variance caused by daily and seasonal cyclic movement. Variances and trends were obtained in this study based on measurements for various cracks. The long-term behavior of cracks should be surveyed and compared with these measurements to investigate trends of convergence with time, caused by convergence of crack spacing.
니티놀이라고 하는 니켈-티타늄 형태의 형상기억 합금(SMA)은 상당한 양의 변형이 발생한 후에 추가적인 열을 가하지 않더라도 상온에서 원래 모양으로 복원될 수 있는 초탄성 효과를 가진다. 이러한 독특한 재료 특성 때문에, 니티놀은은 의료, 전기, 전자 및 기계 분야뿐만 아니라 토목 공학 분야의 내진 개량을 위한 변위 제어 장치로 널리 사용되어 왔다. 탄소강과 달리 초탄성 형상기억합금은 피로 저항성이 강하며 하중 속도에 따라 강성(하중-변위특성)등의 기계적 물성치가 변화한다. 본 연구에서는 하중 사이클의 반복 횟수와 속도에 따라 초탄성 형상기억합금의 기계적 물성치가 어떻게 변하는가에 대한 실험적 연구를 수행하였다. 본 연구로 인해 표준화된 초탄성 형상기억합금의 기계적 물성치는 이후 초탄성 형상기억합금을 적용한 내진 장치의 설계과정에서 활용함으로써 설계 효율성을 높일 수 있을 것으로 기대된다.
Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. Of the SIPs, Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, the allowable shear load for panels was suggested to be at least 6.1kN/m.
The objective of this study is to propose a simple and accurate analytical model for HSS braces. For this purpose, a physical theory model is adopted. Rectangular hollow section steel (HSS) braces are considered in this study. To accurately simulate the cyclic behavior of braces using the physical theory model, empirical equations calculating constituent parameters are implemented on the analytical model, which were proposed in the companion paper. The constituent parameters are cyclic brace growth, cyclic buckling load, and the incidence of local buckling and fracture. The analytical model proposed in this study was verified by comparing actual and simulated cyclic curves of brace specimens. It is observed that the proposed model accurately simulates the cyclic behavior of the braces throughout whole response range.
The cyclic behavior of braces is complex due to their asymmetric properties in tension and compression. For accurately simulating the cyclic curves of braces, it is important to predict the major parameters such as cyclic brace growth, cyclic buckling load, incidence local buckling and fracture with good precision. For a given brace, the most accurate values of these parameters can be estimated throughout experiments. However, it is almost impossible to conduct experiments whenever an analytical model has to be established for many braces in building structures due to enormous cost and time. For avoid such difficulties, empirical equations for predicting constituent parameters are proposed from regression analyses based on test results of various braces. This study focuses on rectangular hollow structural section(HSS) steel braces, which have been popularly used in construction practice owing to its sectional efficiency.
Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.
Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).
Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, the allowable shear load for panels was suggested to be at least 6.1kN/m.
The recently constructed buildings are ensuring seismic safety with enhanced design criteria. But, the buildings unapplied enhanced design criteria are very weak. In this study, steel grid shear wall is proposed as a solution of seismic retrofit to ensure safety of the existing buildings for the earthquake. And the structural performance experiments were carried out under axial force and cyclic lateral loads. The two specimens were made of a reference RC frame and steel grid shear wall in-filled RC frame. The test setup configured with two dynamic actuators, for the axial force with a 500kN capacity actuator and for the cyclic lateral load applied with the 2,000kN actuator. Compared with control specimen, the strength, stiffness, ductility, energy dissipation capacity of the seismic retrofit structures is evaluated.
이 연구는 강한 지진 동안의 진동에 구조물을 보호하는 수동적 에너지 소산 장치중 하나로 대표되는 금속 댐퍼의 비선형 거동과 관련되어 있다. 이러한 댐퍼는 구조물을 보강하는데 적용되고 강한 지진 하중에 대한 구조물의 내력을 증가시킨다. 그러므로 이러한 금속판형 댐퍼를 비탄성 거동을 이해하고 신뢰할 만한 수준으로 설계하기 위해서 탄소성 손상모델이 제안되었다. 이 모델은 손상역학과 열역학을 바탕으로 유도되었다. 그리고 이 손상모델은 유한요소프로그램의 유저코드에 적용되었고, 이 모델에 의한 해석결과와 실험결과와 비교 분석하였다.
본 연구는 폴리에틸렌 정밀여과 막을 이용한 Al2O3 콜로이드 현탁액의 운전압력 순환변화에 따른 투과거동을 검토하였다. 운전압력의 순환은 0.49에서 1.96 bar까지 증가시키는 증압운전 후 다시 0.49 bar로 감소시키는 감압운전으로 행하였다. 연속적으로 운전압력을 순환변화 시킨 결과, 증압운전과 감압운전의 투과유속이 서로 다른 이력(hysteresis)을 나타냈다. 현탁액의 투과저항은 감압운전의 경우가 증압운전의 경우보다 컸으며, 투과저항 증가율도 컸다. 막오염 형태는 증압운전과 감압운전 모두 운전초기에 케익오염이 강하게 나타났으며, 막오염의 크기는 감압운전의 오염이 증압운전의 오염보다 컸다.
반복 횡하중을 받는 콘트리트 충진 탄소섬유 튜브 기둥의 휨거동을 분석하기 위하여 실험을 수행하였다. 콘크리트 충진 각형 탄소섬유 튜부 기둥의 휨거동에 영향을 미치는 탄소섬유의 와인딩 각도와 두께를 변수로 선택하여 거동을 평가하였다. 콘트리트 충진 탄소섬유 튜브 기둥의 휨거동 보다 정확하게 분석하기 위하여 설정된 두 변수를 동시에 고려하였다. 실험의 결과에서 얻어진 하중-변형 곡선을 이용하여 콘크리트 충진 각형 탄소섬유 튜브 기둥이 휨강도, 변형능력 및 에너지 소산능력을 조사하였다. 또한 기존 구조물과의 비교를 위하여 철근콘크리트 조적벽과 콘크리트를 충진한 각형 탄소섬유 튜브 기둥과의 연성 능력을 비교 평가하였다.
반복 횡하중을 받는 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동을 분석하기 위하여 여섯 개의 시험체에 대한 실험을 수행하였다. 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동에 영향을 미치는 탄소섬유의 와인딩 각도와 두께를 변수로 선택하여 거동을 평가하였다. 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동을 보다 정확하게 분석하기 위하여 설정된 두 변수를 동시에 고려하였다. 실험의 결과에서 얻어진 하중-변형 곡선을 이용하여 콘크리트 충진 탄소섬유 튜브 기둥의 휨강도, 변형능력 및 에너지 소산능력을 조사하였다. 또한 기존 구조물과의 비교를 위하여 철근콘크리트 조적벽과 콘크리트를 충진한 탄소섬유 튜브 기둥과의 연성 능력을 비교 평가하였다.
본 논문에서는 동반된 논문에서 제안된 수정 병렬 IWAN 모델의 적용성을 금강 모래와 토요라 모래를 대상으로 비틂전단실험을 수행하여 검증하였다. 두가지 사질토에 대해서 대칭 하중과 불규칙 하중을 반복 재하하여 실험을 수행하였다. 제안된 모델의 변수는 다양한 상대밀도와 구속압 조건하에서 대칭 반복하중을 재하하여 결정하였다. 시험 결과, 하중반복회수가 증가함에 따라 발생하는 사질토의 반복경화거동을 수정 병렬 IWAN 모델로 표현 가능하였으며, Pyke(1979)에 의해 제안된 불규칙 하중 형태를 이용한 실험결과를 실험 조건이 유사한 대칭 반복하중 재하실험 결과로 얻어진 모델 변수를 이용하여 예측한 결과 실험 결과와 잘 일치함을 알 수 있었다.
본 논문에서는 기존 IWAN 모델을 수정하여 사질토 지반의 반복경화 현상을 나타낼 수 있는 지반의 반복경화모델을 개발하였다. 일반적으로 동적하중을 받는 지반재료는 하중 반복회수에 따라 동적 거동특성이 변화하게 되며 이는 반복 경화 및 연화현상으로 나타난다. 본 논문에서는 등방 경화 또는 등방 연화 거동을 하는 스프링슬라이더 요소를 기존 병렬 IWAN 모델에 추가함으로써 지반의 동적 변형특성 표현이 가능하였다. 등방 경화 거동을 보이는 요소들의 항복 응력은 각각 반복 경화함수에 의하여 증가하도록 정의되었으며, 반복 경화함수는 대칭 한계를 가지는 동적 비틂전단 시험결과로부터 정의되었다. 이렇게 정의된 반복 경화함수는 지반의 동적 변형 특성을 묘사하기 위하여 하나의 독립 변수를 가지게 되며, 사용된 독립변수는 지반의 동적 한계 변형률의 특성을 포함하는 누적전단변형률로 사용되었다. 누적 전단변형률은 반복 전단한계 변형률 이상의 변형률의 누적으로 정의되며, 역재하 및 재재하 곡선에서는 Masing의 법칙을 적용하여 계산될 수 있다. 본 논문에서는 모델의 개발과정을 서술하였고, 모델에 대한 검증은 동반논문인 검증편에 설명하였다.
지진하중을 받는 철근콘크리트 패널의 이력거동을 힘의 평형조건, 변형의 적합조건 및 재료의 구성법칙을 이용한 재료메카니즘을 이용하여 예측하였다. 해석에서는 7단계의 압축응력-변형률곡선과 6단계의 인장응력-변형률곡선으로 구성된 콘크리트의 응력-변형률 모델을 이용하였다. 콘크리트의 응력-변형률 모델에는 균열이 발생한 콘크리트의 연화효과에 의한 압축강도 저감효과가 고려되었다. 해석에 적용된 반복하중을 받는 철근의 평균 응력-변형률관계에는 바우싱거효과 및 철근과 콘크리트의 부착작용을 고려한 인장경화효과가 고려되었다. 해석에 의하여 예측된 패널의 이력거동은 철근비가 다른 3개의 철근콘크리트 패널시험에 의하여 검증되었다. 해석법은 패널의 이력곡선을 추적하여 철근비가 점차 증가하는 시험체의 최대전단응력을 매우 정확히 예측하였다. 또한, 해석에 의하여 예측된 수직 및 수평변형률은 실험에서 관찰된 변형률과 잘 일치하였다.