검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
        6,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인공위성은 최첨단 기술로써 시공간적 관측제약이 적어 해양 사고에 효과적 대응과 해양 변동 특성 분석 등으로 각국의 국가 기관들이 위성 정보를 활용하고 있다. 하지만 고해상도 위성 관측 기반 해수면 온도 자료(Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA)는 위성의 기기적, 또는 지리적 오류와 구름으로 인해 낮게 관측되거나 공백으로 처리되며 이를 복원하기까지 수 시간이 소요된다. 본 연구는 최신 딥러닝 기반 알고리즘인 LaMa 기법을 활용하여 결측된 OSTIA 자료를 복원하고, 그 성능을 기존에 이용되어 온 세 가지 영상처리 기법들의 성능과 비교하여 평가하였다. 결정계수(R²)와 평균절대오차(MAE) 값을 이용하여 각 기법의 위성 영상 복원 성 능을 평가한 결과, LaMa 알고리즘을 적용하였을 때의 R²과 MAE 값이 각각 0.9 이상, 0.5℃ 이하로, 기존에 사용되어 온 쌍 선형보간법, 쌍 삼차보간법, DeepFill v1 기법을 적용한 것보다 더 우수한 성능을 보였다. 향후에는 현업 위성 자료 제공 시스템에 LaMa 기법을 적용하여 그 가능성을 평가해 보고자 한다.
        4,000원
        9.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier’s abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
        4,300원
        10.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.
        4,000원
        11.
        2023.05 구독 인증기관·개인회원 무료
        To conduct numerical simulation of a disposal repository of the spent nuclear fuel, it is necessary to numerically simulate the entire domain, which is composed on numerous finite elements, for at least several tens of thousands of years. This approach presents a significant computational challenge, as obtaining solutions through the numerical simulation for entire domain is not a straightforward task. To overcome this challenge, this study presents the process of producing the training data set required for developing the machine learning based hybrid solver. The hybrid solver is designed to correct results of the numerical simulation composed of coarse elements to the finer elements which derive more accurate and precise results. When the machine learning based hybrid solver is used, it is expected to have a computational efficiency more than 10 times higher than the numerical simulation composed of fine elements with similar accuracy. This study aims to investigate the usefulness of generating the training data set required for the development of the hybrid solver for disposal repository. The development of the hybrid solver will provide a more efficient and effective approach for analyzing disposal repository, which will be of great importance for ensuring the safe and effective disposal of the spent nuclear fuel.
        16.
        2023.04 구독 인증기관·개인회원 무료
        17.
        2023.04 구독 인증기관·개인회원 무료
        1 2 3