기술 트렌드가 증가함에 따라, 엄청난 양의 데이터가 생성되고 있습니다. 많은 양의 데이터가 소비되는 기술 분야 중 하나는 컴퓨터 비전이다. 인간은 기계와 비교할 때 시각에 영향을 미치는 표정, 조명 또는 시야각과 같은 외부 조건에서도 얼굴이나 사물을 쉽게 감지하고 인식할 수 있다. 그 이유는 그것과 관련된 높은 차원 의 데이터 때문이다. 데이터 차원성은 모든 관측치에서 측정되는 변수의 총 수를 말합니다. 이번 사업은 안 면인식시스템에 적합한 다양한 차원감소 기법을 비교하고 조도가 다양한 안면이미지로 구성된 다양한 데이 터세트로 테스트해 모델의 정확도 향상에 도움이 되는 기법의 앙상블 모델을 제안하고 성능을 측정하는 것 이 목적이다.렉스 배경과 표현. 제안된 앙상블 모델은 주성분 분석(PCA)과 로컬 선형 임베딩(LLE)이라는 두 가지 차원 감소 기술의 혼합에서 벡터를 추출하고, 이를 밀도 높은 컨볼루션 신경망(CNN)을 통해 전달하여 야생 면(LFW) 데이터 세트의 얼굴을 예측한다. 이 모형은 0.95의 검정 정확도와 0.94의 검정 F1 점수로 수행 됩니다. 제안된 시스템은 시스템이 얼굴을 예측할 수 있는 제안된 앙상블 모델과 통합된 웹캠에서 라이브 비 디오 스트림을 캡처하는 플라스크를 사용하여 개발된 웹 앱을 포함한다.
이제는 모바일 마켓순위에서 많은 게임이 높은 점유율을 차지하지만 점유율을 오랫동안 유지 하는 것은 쉽지 않다. 게이머를 끌어당기는 중요한 요소는 게임 재미(Game Fun)이고, 게임을 재미있게 만드는 가장 중요한 요소는 게임 난이도이다. 하지만 게임 난이도를 디자인하는 것은 매우 어려운 일이다.
본 논문은 두 개의 연속적인 컨볼루셔널 레이어를 사용한 컨볼루셔널 신경망과 SVM 분류기를 이용하여 게임 시 플레이어의 얼굴 표정을 실시간으로 검출하고 판단한다. 실험 결론은 CNN을 이용한 표정 시스템은 게임 play-time 및 score를 늘릴 수 있고, 게임 재미를 증진시키기에 도와 준다고 증명하였다.
Recently, information technology has been developed rapidly over than everyone thinks. The computer technology with hardware and software development of artificial intelligent and machine learning would be more interested in the interactive computer technology. In this paper, we propose a new paradigm to implement the system which recognizes human’s emotion and reacts with the emotion, and this will be human interactive and applied in every information technical field. This system implements an intelligent system that analyzes human’s faces following with the recognition of emotion, which will be the intelligent system that reacts in accordance with the emotion. The proposed real-time intelligent system will develop the system that recognizes human’s emotion, with the emotion, and reacts the actions in the field of marketing of enterprises, intelligent games, and intelligent robots.
Recently, the field of emotional ICT which recognizes human's emotion is a rapidly growing interest. For example, various products applying emotion are being released and Softbank's robot, Pepper, is the one of those. This robot can recognize human's emotion through facial expressions and have conversations accordingly. By reading emotion through facial expressions, communication with humans become more natural. In addition, the emotional interface between machines and humans in various areas are applied to show a more intimate interface such as emotional application games that respond differently based on the emotion. In this paper, a system applying special effects on images based on recognition of six emotions from the facial expressions is proposed. A more friendly content can be produced by applying an appropriate emotional effect on the image loaded by the user with the user's facial expression. The result of this paper can be very appropriate to game scenarios and developing game program stages with the recognition of human emotion.
인간의 감정을 인식하는 기술은 많은 응용분야가 있음에도 불구하고 감정 인식의 어려움으로 인해 쉽게 해결 되지 않는 문제로 남아 있다. 인간의 감정 은 크게 영상과 음성을 이용하여 인식이 가능하다. 감정 인식 기술은 영상을 기반으로 하는 방법과 음성을 이용하는 방법 그리고 두 가지를 모두 이용하는 방법으로 많은 연구가 진행 중에 있다. 이 중에 특히 인간의 감정을 가장 보편적으로 표현되는 방식이 얼굴 영상을 이용한 감정 인식 기법에 대한 연구가 활발히 진행 중이다. 그러나 지금까지 사용자의 환경과 이용자 적응에 따라 많은 차이와 오류를 접하게 된다. 본 논문에서는 감정인식률을 향상시키기 위해서는 이용자의 내면적 성향을 이해하고 분석하여 이에 따라 적절한 감정인식의 정확도에 도움을 주어서 감정인식률을 향상시키는 메카니즘을 제안하였으며 본 연구는 이러한 이용자의 내면적 성향을 분석하여 감정 인식 시스템에 적용함으로 얼굴 표정에 따른 감정인식에 대한 오류를 줄이고 향상 시킬 수 있다. 특히 얼굴표정 미약한 이용자와 감정표현에 인색한 이용자에게 좀 더 향 상된 감정인식률을 제공 할 수 있는 방법을 제안하였다.
The purposes of this study were to provide information on customers for cosmetic companies to develop goods and promotion strategy by examining facial images of university women and their recognition level about cosmetics brand personality. The results were as follows; First, satisfaction level of university women with their lips and eyes was very high, while lowest in skins. Second, factors of brand personality of three kinds of foreign cosmetics brands and three kinds of domestic brands were sincerity, beauty, renovation, reliability and ruggedness. In beauty, reliability and ruggedness, they preferred foreign brands to domestic ones, while they preferred domestic ones in sincerity and renovation. Third, the satisfaction level with face had a statistically significant relationship to the importance of face and cosmetic brands, while the importance of face had to the beauty of the brand. In the interrelationship among facial images and the factors of brand personality, they had significant interrelationships, provided beauty and ruggedness, and reliability and ruggedness had no significant interrelationship.
본 연구는 공감-체계화 유형, 얼굴제시영역, 정서유형에 따른 정서 인식과 정서 변별 간 관계를 알아보기 위하여 수행되었다. 실험 1에서는 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 인식 정도가 어떻게 달라지는지 알아보았다. 그 결과 공감-체계화 유형에 따른 정서 인식 정도에는 유의미한 차이가 없었고, 얼굴제시영역과 정서유형에 따른 차이는 유의미하게 나타났다. 실험 2에서는 과제를 바꾸어 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 변별 정도에 차이가 있는지 알아보았다. 그 결과 얼굴제시영역과 정서 유형에 따른 정서 변별 정도에 유의미한 차이가 있었다. 공감-체계화 유형과 정서유형 간 유의미한 상호작용이 있었는데, 기본정서에서는 공감-체계화 유형에 따른 변별 정도가 유의미한 차이를 보이지 않은 반면, 복합정서에서는 공감-체계화 유형 간 유의미한 차이를 보였다. 즉, 정서 인식과 달리 정서 변별에 있어서는 정서 유형에 따라 공감-체계화 유형 간 정확률에 차이가 나타났다. 이는 정서를 인식하는 것과 변별하는 것이 공감-체계화 유형에 따라 다르게 나타난다는 것을 보여준다. 본 연구를 통해 한 개인이 가지고 있는 공감하기와 체계화하기 특성, 얼굴제시영역, 정서유형이 정서인식과 정서 변별에 서로 다른 영향을 줄 수 있다는 것을 밝혔다.
본 연구에서는 동영상 자극과 정지 영상 자극을 사용하여 얼굴 표정의 영역(얼굴 전체/눈 영역/입 영역)에 따른 정서 상태 전달 효과를 알아보고자 하였다. 동영상 자극은 7초 동안 제시되었으며, 실험 1에서는 12개의 기본 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를, 실험 2에서는 12개의 복합 정서에 대한 얼굴 표정 제시 유형과 제시 영역에 따른 정서 인식 효과를 살펴보았다. 실험 결과, 동영상 조건이 정지 영상 조건보다 더 높은 정서 인식 효과를 보였으며, 입 영역과 비교하였을 때 동영상에서의 눈 영역이 정지 영상 보다 더 큰 효과를 보여 눈의 움직임이 정서 인식에 중요할 것임을 시사하였다. 이는 기본 정서 뿐 아니라 복합 정서에서도 어느 정도 관찰될 수 있는 결과였다. 그럼에도 불구하고 정서의 종류에 따라 동영상의 효과가 달라질 수 있기 때문에 개별 정서별 분석이 필요하며, 또한, 얼굴의 특정 영역에 따라서도 상대적으로 잘 나타나는 정서 특성이 다를 수 있음을 사사해 준다.
본 논문은 얼굴인식 분야에 있어서 필수 과정인 얼굴 및 얼굴의 주요소인 눈과 입의 추출에 관한 방법을 제시한다. 얼굴 영역 추출은 복잡한 배경하에서 움직임 정보나 색상정보를 사용하지 않고 통계적인 모델에 기반한 일종의 형찬정합 방법을 사용하였다. 통계적인 모델은 입력된 얼굴 영상들의 Hotelling변환 과정에서 생성되는 고유 얼굴로, 복잡한 얼굴 영상을 몇 개의 주성분 갑으로 나타낼 수 있게 한다. 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴을 추출하기 위해서, 단계적인 크기를 가지는 탐색 윈도우를 이용하여 영상을 검색하고 영상 강화 기법을 적용한 후, 영상을 고유얼굴 공간으로 투영하고 복원하는 과정을 통해 얼굴을 추출한다. 얼굴 요소의 추출은 각 요소별 특성을 고려한 엣지 추출과 이진화에 따른 프로젝션 히스토그램 분석에 의하여 눈과 입의 경계영역을 추출한다. 얼굴 영상에 관련된 윤곽선 추출에 관한 기존의 연구에서 주로 기하학적인 모양을 갖는 눈과 입의 경우에는 주로 가변 템플릿(Deformable Template)방법을 사용하여 특징을 추출하고, 비교적 다양한 모양을 갖는 눈썹, 얼굴 윤곽선 추출에는 스네이크(Snakes: Active Contour Model)를 이용하는 연구들이 이루어지고 있는데, 본 논문에서는 이러한 기존의 연구와는 달리 스네이크를 이용하여 적절한 파라미터의 선택과 에너지함수를 정의하여 눈과 입의 윤곽선 추출을 실험하였다. 복잡한 배경하에서 얼굴 영역의 추출, 추출된 얼굴 영역에서 눈과 입의 영역 추출 및 윤곽선 추출이 비교적 좋은 결과를 보이고 있다.
In this paper, we propose and examine the feasibility of the robot-assisted behavioral intervention system so as to strengthen positive response of the children with autism spectrum disorder (ASD) for learning social skills. Based on well-known behavioral treatment protocols, the robot offers therapeutic training elements of eye contact and emotion reading respectively in child-robot interaction, and it subsequently accomplishes pre-allocated meaningful acts by estimating the level of children’s reactivity from reliable recognition modules, as a coping strategy. Furthermore, for the purpose of labor saving and attracting children’s interest, we implemented the robotic stimulation configuration with semi-autonomous actions capable of inducing intimacy and tension to children in instructional trials. From these configurations, by evaluating the ability of recognizing human activity as well as by showing improved reactivity for social training, we verified that the proposed system has some positive effects on social development, targeted for preschoolers who have a high functioning level.
Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".
컴퓨터 기술의 발전에 따라서 게임분야 역시 다양한 첨단 기술이 적용되고 있다. 예를 들면 강력한 3D가속 기능을 가진 비디오카드, 5.1 채널 사운드, 포스피드백 지원 입력 장치, 운전대, 적외선 센서, 음성 감지기 등이 게임의 입출력 인터페이스로서 이용되고 있다. 전형적인 방법 이외에도 광학방식이나 휴대용 게임기에 대한 플레이 방식에 대한 연구도 활발하다. 최근에는 비디오 게임기에도 사람의 동작을 인식하여 게임의 입력으로 받아들이는 기술이 상용화되기도 하였다. 본 논문에서는 이런 발전 방향을 고려하여 차세대 게임 인터페이스의 방식으로서 사용될 수 있는 사람의 표정 인식을 통한 인터페이스 구현을 위한 접근 방법들에 대하여 고찰을 하고자 한다. 사람의 표정을 입력으로 사용하는 게임은 심리적인 변화를 게임에 적용시킬 수 있으며, 유아나 장애자들이 게임을 플레이하기 위한 수단으로도 유용하게 사용될 수 있다. 영상을 통한 자동 얼굴 인식 및 분석 기술은 다양한 응용분야에 적용될 수 있는 관계로 많은 연구가 진행되어 왔다. 얼굴 인식은 동영상이나 정지영상과 같은 영상의 형태, 해상도, 조명의 정도 등에 따른 요소에 의하여 인식률이나 인식의 목적이 달라진다. 게임플레이어의 표정인식을 위해서는 얼굴의 정확한 인식 방법을 필요로 하며, 이를 위한 비교적 최근의 연구 동향을 살펴보고자 한다.