By developing plasma torch melting technology in 1996, our company has developed the first generation 150 kW (’96~’02), the second generation 500 kW (’08~’12), and the third generation MW plasma torch melting facility (’14~’18), and completed facility upgrading (’20~’23). The MW plasma torch melting facility is equipped with CCTV to monitor waste input, melting, torch integrity, and melt discharge. The lens is installed inside a metal housing made of stainless steel to prevent damage caused by external impacts and high temperatures, and supplies nitrogen to prevent cooling and lens contamination. As a result of the demonstration test, as the temperature inside the melting furnace increased after starting the plasma torch, the resolution decreased along with noise in the CCTV, and facility monitoring was difficult due to high temperatures and foreign substances (fume). Based on the test results, CCTV was changed to a non-insertion type that was not directly exposed to high temperatures, and a filter (quartz) was additionally applied to monitor the melt smoothly. As a result of applying the newly manufactured CCTV to the demonstration test, smooth monitoring ability was confirmed even at normal operating temperature (above 1,500°C). Through this facility improvement, the operation convenience of the plasma torch melting facility has been secured, and it is expected that it will be able to operate stably during long-term continuous operation in the future.
This study monitored temperature using electronic sensors and developed a prediction model for compost maturity. The experiment used swine manure in a mechanical composting facility equipped with a screw-type agitator, and the composting process was conducted for 60 d during the summer season in South Korea. Four electronic temperature sensors were installed on the inner wall between the compost piles on Days 7, 14, 21, and 28 for daily temperature monitoring. Compost samples were collected daily for 60 d, and compost maturity was analyzed using the Solvita method. Multiple comparisons, correlations, and modeling were performed using the stat package in R software. The average compost pile temperatures was 39.1±3.9, 36.4±4.3, 31.3±4.5, and 35.4±8.1 on days 7, 14, 21, and 28, respectively, after composting. The average compost maturity according to the composting date was 3.61±0.60, 4.13±0.59, 4.26±0.47, and 4.32 ±0.56 on days 7, 14, 21, and 28, respectively. A significant negative correlation was observed between the compost composting periods (seven, 14, 21, and 28 d) and the temperature of all compost piles (p<0.05), where the correlation coefficients were -0.329, -0.382, -0.507, and -0.634, respectively. A significant positive correlation was observed between the compost composting periods (seven, 14, 21, and 28 d) and the maturity of the compost (p<0.05), where the correlation coefficients were 0.410, 0.550, 0.727, and 0.840, respectively. The model for predicting the maturation of the 14 d average compost pile according to the compost composting period and the average temperature for 14 d was y=0.026 x d – 0.021 x mt.x_14 d (mean temperature for 14 d) + 4.336 (R2=0.7612, p<0.001). This study can be considered a basic reference for predicting compost maturity by the proposed model using electronic temperature sensors.
The disposing method of the low-intermediate-level radioactive waste, near-surface disposal facilities are generally used. This disposal method refers to a method of constructing a concrete structure on the surface of the ground, putting radioactive waste in it, and covering it with an engineered barrier to isolate human life. Among these, engineered barriers mean covering multiple layers of heterogeneous materials such as sand, clay, and gravel. Engineering barriers have the purpose of delaying the release of radioactive materials into the natural environment as much as possible, and maintaining the isolation of radioactive waste and human life for as long as possible. In this study, the design and construction method of the facility to demonstrate the performance of the engineered barrier that isolates the surface disposal facility from nature was described. In addition, the design and construction method of monitoring technology that can monitor the safety of engineered barriers by measuring information such as moisture, temperature, and slope safety in real time was also explained.
원자력이용시설에서 유출된 방사성 오염물질은 지표수나 지하수의 유동에 따라 이동할 수 있다. 이 중에 지표수에 의해 이동하는 오염물질은 비교적 감시가 용이하지만, 지하수를 따라 이동하는 오염물질은 대상 매질에서의 지하수흐름에 대한 정보를 알아야 하므로 감시가 매우 어렵다. 그러므로 지하수에 의한 오염물질의 이동을 규명하기 위해서 지질환경의 특성화가 선행되어야 한다. 본 연구에서는 연구부지에 건설된 가상의 원자력이용시설에 대한 감시공의 위치를 결정하고, 감시공에서의 심도별 감시 구간을 선정하는 방법론을 제안하였다. 감시공의 위치를 결정하기 위해 지하수유동 모델링을 수행하였고, 그 결과 지하수 흐름의 하류 지역에 감시공의 위치를 선정하였으며, 감시공에서 수행한 현장조사 결과를 바탕으로 비교적 지하수의 흐름이 빠른 구간을 대상으로 감시 구간을 선정하였다. 본 연구를 통해 개발된 모니터링 방법론은 국내 원자력 발전소를 포함한 원자력이용시설 뿐만 아니라, 유류비축시설의 오염물질, 농업 관련 지하수 오염의 감시 등 다양한 분야에서 잠재적으로 지하수에 유입될 수 있는 오염물질을 조기 감시하는 데에 활용할 수 있을 것이다.
본 연구에서는 한국원자력연구원의 핵연료가공시설 굴뚝 내에서 9곳의 시료채취 위치를 선정하여 ANSI/HPS N13.1-1999 지침에서 제시하는 기준에 따라 그 적절성을 평가하였다. 유체를 포함한 다중물리 해석 소프트웨어인 COMSOL을 활용하여 유동교란 지점으로부터 굴뚝 직경의 배수 높이 위치(L/D) 단면에서의 속도분포, 유동각 및 10 μm 크기의 입자분포 등의 항 목에 대하여 기준만족 여부를 평가하였다. 평가 결과, 5 L/D 이상에서 속도분포에 대한 기준을 만족했으며, 평균 유동각에 대한 기준은 모든 위치에서 만족했다. 입자분포에 대한 기준은 5 L/D 와 9 L/D 에서 만족하였으나, 그 분포가 일부에서 기 준을 만족하지 못하였다. 균일한 입자분포를 얻기 위한 방법으로 굴뚝 내 정적 혼합장치(static mixer)와 둘레링(perimeter ring)을 추가하는 것을 제안하고, 이에 대한 평가를 수행하였다. 정적 혼합장치를 추가한 경우에는 5-10 L/D, 둘레링을 추가 한 경우에는 5 L/D 및 7-10 L/D 에서 입자분포에 대한 기준을 만족하였다. 보완을 위하여 추가한 2 가지 조건에서, 입자분포 에 대한 기준을 만족하는 지점은 속도분포 및 평균 유동각에 대한 기준 역시 만족하고 있음을 확인하였다. 본 연구에서 사 용한 방법은 신규시설뿐만 아니라, 현장입증시험 수행이 어려운 운영중인 시설에 대하여 시료채취 위치의 적절성을 평가하 기 위한 방법으로 활용될 수 있다.
The construction industry is high risk in all process that are feasibility study, planning and design, construction, occupancy, use, operation and maintenance etc. These days risk are occurring in maintenance stage. In this study evaluated the aging facility after maintenance through simple quality monitoring. The results, That were able to identify the extent maintenance of facility.