검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.
        4,000원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work describes the synthesis and characterization of a heterogeneous catalyst consisting of piperazine-functionalized reduced graphene oxide decorated with Fe3O4 nanoparticles ( Fe3O4@rGO-NH), and the study of its catalytic activity as a magnetic heterogeneous catalyst for the Pechmann synthesis of coumarins. Catalyst Fe3O4@ rGO-NH was fully characterized by various techniques, including IR, XRD, TEM, VSM, TGA, and elemental analysis. Then, the catalyst was used as an efficient and easy-separable heterogeneous catalyst for the solvent-free synthesis of some coumarins by Pechmann reaction. The reaction was optimized in terms of reaction time and temperature, catalyst dosage, and the presence/absence of the solvent. Finally, the reusability of the catalyst was studied.
        4,000원
        3.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical water splitting is an important process for next generation of eco-friendly energy systems. The oxygen evolution reaction (OER), which occurs at an anode during the process, requires efficient electrocatalysts to reduce activation energies. Although Ru- or Ir-containing materials show excellent electrocatalytic activities, their high cost is a critical drawback. Consequently, the development of efficient electrocatalysts composed of low-cost metal components is a great challenge. In this study, we develop a new route to produce a hybrid material (Fe–NC) containing Fe3C particles dispersed on the surface of N-doped carbon (NC) materials by heat treatment of a mixture of urea and Fe(II)Cl2(H2O)4. Microscopic analyses prove that the Fe3C particles are placed on the surfaces of thin NC materials. Additionally, various characterizations reveal that the particles contain Fe3C structure. Fe–NC shows good electrocatalytic properties with onset and overpotentials of 1.57 V and 545 mV, respectively, for OER in KOH electrolyte. This study suggests the possibility of the use of Fe3C- based composites as OER electrocatalysts.
        4,000원
        4.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Fe3O4/ MgO/Activated carbon composite was used to remove arsenic ion (As (III)) from aqueous media. To this end, Frangula Alnus was used to prepare activated carbon (AC) by calcination in the furnace at 700 °C for 4 h and was then used to synthesize the MgO/Fe3O4/AC composite. To study the surface properties of the composite, various analyses such as SEM, EDX/Mapping, FTIR, DLS, BET and VSM were applied. According to the BET analysis, the specific surface area and average pore size of the Fe3O4/ MgO/AC composite were obtained as 190.92 m2/g and 7.57 nm, respectively, which showed that the aforementioned nanocomposite had a mesoporos structure with an excellent specific surface area. Also, VSM analysis indicated that the composite had a superparamagnetic property and could be easily separated from the solution by a magnet. Moreover, the results of the As (III) sorption indicated that the highest uptake efficiency was obtained 96.65% at pH = 7, adsorbent dosage = 0.13 g/L, t = 35 min, T = 45 °C and Co = 6 mg/L. In addition, the pseudo-second-order model could better describe the kinetic behavior of the sorption process. Furthermore, Langmuir model was the best model to describe the equilibroium behavior of the As(III) ion sorption. Besides, according to the the thermodynamic study, enthalpy change and entropy change were obtained 58.11 kJ/mol and 224.49 J/mol.K, respectively, indicating that the sorption process was spontaneous and endothermic. According to the results, the Fe3O4/ MgO/AC composite was a good adsorbent with the extraordinary properties, which can be used on an industrial scale.
        4,300원
        5.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Highly luminescent carbon quantum dots (CQDs) are developed as fluorescent probes for selective detection of the heavy-ion Fe3+, where the CQDs exhibit excellent nontoxicity, functionalizability, sensitivity, and selectivity. Biomass-based CQDs and nitrogen-doped CQDs (N-CQDs) are synthesized for the selective detection of Fe3+ by using H2O2 as an oxidant and polyetherimide (PEI) as a nitrogen precursor by a green hydrothermal synthesis method. The prepared CQDs and N-CQDs exhibit an elliptical morphology and with an average particle size of 7 and 4 nm, respectively, and emit blue photoluminescence at 445 and 468 nm under excitation at 367 and 343 nm, respectively. The CQDs and N-CQDs exhibit good water solubility because of the abundant hydroxyl and carboxyl/carbonyl groups and graphic/pyrrolic/pyridinic nitrogen on the surfaces, giving rise to a quantum yield of about 24.2% and 30.7%, respectively. Notably, the Matrimony vine-PEI-based CQDs exhibit excellent Fe3+ selectivity and sensitivity relative to the Matrimony vine-based CQDs due to complexation of the numerous phenolic hydroxyl groups and nitrogen-containing groups with Fe3+, leading to increased fluorescence quenching, which greatly improves the sensitivity of detection. The minimum detection limit was 2.22 μmol L− 1 with a complexation constant of 44.7.
        4,000원
        6.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightweight and flexible electromagnetic interference (EMI) shielding materials are in great demand for wearable EMI device. In the present work, lightweight and flexible carbon nanotube (CNT)/ferroferric oxide ( Fe3O4) composite film was made through a feasible chemical vapor deposition process for CNT film synthesis, followed by a hydrothermal reduction process for Fe3O4 coating. In the as-prepared composite, CNT film and Fe3O4 particles work as conductive skeleton and strong magnetic particle, respectively. The as-prepared composite film shows a novel EMI shielding effectiveness (SE) of 91 dB in the X-band, a small thickness of 0.09 mm and a low density of 0.86 g/cm3, which is superior to most of the carbonbased EMI materials.
        4,000원
        7.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Necessity of novel energy storage devices extensively increased due to consumption of high power in various devices. To address the issues, in this report, we are addressing with a composite Iron Sulfide/reduced Graphene Oxide ( Fe3S4/rGO) synthesized using the standard solvothermal method. X-ray diffraction and Field Emission Scanning Electron Microscope analysis results confirmed that Face-Centered cubic crystal structure of Fe3S4 and rGO’s surface is decorated with a mean diameter of < 50 nm Fe3S4 respectively. Transmission Electron Microscopy images show further evidence that dispersed Fe3S4 on the rGO surface. Fe3S4/ rGO exhibits specific capacitance of 560 F/g than its individual counterparts ( Fe3S4 = 200 F/g and rGO = 145 F/g) at 1 A/g of current density and maximum cyclic stability of 91% capacitance retention after 2000 cycles that may be the influence of synergy between the composite materials.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 μm) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°–80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 구리 이온(Cu2+ ion) 제거를 위한 산화철(Fe3O4)/다공성 탄소 복합체를 합성하였으며, 이를 바탕으로 구리 이온 제거에 대한 특성 평가를 실시하였다. SEM, XRD 분석을 진행하여 수열합성(hydrothermal) 반응을 이용한 산화철/다공성 탄소 복합체의 형태와 구조를 확인하였다. BET 분석을 통해 비표면적과 기공 크기를 확인하였으며, UV-vis 장비를 통해 성능 평가를 실시하여 자성이 있는 Fe3O4와 다공성 탄소와의 시너지효과를 통해 액체 상태에서 존재하는 구리 이온을 제거할 수 있는 가능성을 제시하였다.
        4,000원
        11.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide(Fe3C) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, Fe3C-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of −0.18 V, a high E1/2 of −0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, Fe3C-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ΔE1/2= 8 mV compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, Fe3C-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.
        4,000원
        12.
        2017.11 구독 인증기관·개인회원 무료
        Due to the globalization of food supply have been growing, there have been a great demands for food safety and quality assuarance for on-site detection. On-site detetction isuue is the process should be fast, simple, user-friendly and require minimal equipments. Herein, we developed a Radial chromatography (RC) biosensor integrated with the immuno-gold nanoparticles-coated magnetic nanoparticle (AuNPs@Fe3O4) for specific separation and detection of the target bacteria, E. coli O157:H7, in sample. The immuno-AuNPs@Fe3O4 specifically binds to E.coli O157:H7 creating AuNP@Fe3O4-E.coli complexes and captured bacteria were concentrated by magnet. The complex can be identified with inner ring derived from the difference of mobility of free AuNPs@Fe3O4 on the RC sensor. Our results show that AuNPs@Fe3O4 based RC sensor has high sensitivity to the target bacteria over non-target bacteria with a detection limit of 103 CFU/ml. Our system offers a rapid and sensitive means of detecting E.coli O157:H7 with naked eyes, which can be applied to the field diagnosis.
        13.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, Fe3O4/Fe nanocomposites are fabricated under the same conditions. The Fe3O4/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The Fe3O4/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the Fe3O4/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for Fe3O4/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.
        4,000원
        14.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report on a simple and robust route to the spontaneous assembly of well-ordered magnetic nanoparticle superstructures by irreversible evaporation of a sessile single droplet of a mixture of a ferrofluid (FF) and a nonmagnetic fluid (NF). The resulting assembled superstructures are seen to form well-packed, vertically arranged columns with diameters of 5~0.7 μm, interparticle spacings of 9~2 μm, and heights of 1.3~3 μm. The assembled superstructures are strongly dependent on both the magnitude of magnetic field and the mixing ratio of the mixture. As the magnitude of the externally applied magnetic field and the mixing ratio of the mixture increase gradually, the size and interspacing of the magnetic nanoparticle aggregations decrease. Without an externally applied magnetic field, featureless patterns are observed for the γ-Fe3O4 nanoparticle aggregations. The proposed approach may lead to a versatile, cost-effective, fast, and scalable fabrication process based on the field-induced self-assembly of magnetic nanoparticles.
        4,000원
        15.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, magnetite (Fe3O4) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like Fe3O4 nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The Fe3O4/GCE was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the Fe3O4/GCE was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the Fe3O4/GCE. The electrocatalytic ability of Fe3O4 was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the Fe3O4/GCE exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of 0.09-47 μM with a correlation coefficient of 0.9919 and a limit of detection of 0.09 μM (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.
        4,000원
        16.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        연구에서는, 전기방사법을 이용하여 산화철-산화그래핀(Fe3O4/GO, metallic graphene oxide; MGO)이 도입된 PVdF/MGO 복합나노섬유(PMG)를 제조하였으며, 이를 활용하여 비소제거에 대한 특성 평가를 진행하였다. MGO의 경우 In-situ-wet chemical 방법으로 제조하였으며, FT-IR, XRD분석을 진행하여, 형태와 구조를 확인하였다. 나노섬유 분리막의 기 계적 강도 개선을 위하여 열처리과정을 진행하였으며, 제조된 분리막의 우수한 기계적 강도 개선 효과를 확인할 수 있었다. 그러나, PMG 막의 경우, 도입된 MGO의 함량이 증가할수록 기계적 강도가 감소되는 경향성을 보여주었으며, 기공크기 분석 결과로부터, 0.3~0.45 μm의 기공크기를 가진 다공성 분리막이 제조되었음을 확인할 수 있었다. 수처리용 분리막으로의 활용 가능성 조사를 위해, 수투과도 분석을 실시하였다. 특히, PMG2.0 샘플의 경우 0.3 bar 조건에서, PVdF 나노섬유막(91 kg/m2h)에 비해 약 70% 향상된 결과값(153 kg/m2h)을 나타내었다. 또한, 비소 흡착실험 결과로부터, PMG 막의 경우, 비소3 가와 5가에 최대 81%, 68%의 높은 제거율을 보여주었으며, 흡착등온선 분석으로부터, 제조된 PMG 막의 경우 비소3가, 5가 모두 Freundlich 흡착거동을 따른다는 것을 확인하였다. 위 모든 결과로부터, PVdF/MGO 복합 나노섬유 분리막은 비소제거 및 수처리용 분리막으로 충분히 활용할 수 있을 것으로 판단된다.
        4,000원
        17.
        2015.11 구독 인증기관·개인회원 무료
        본 연구에서는 개선된 Hummers법으로 제조된 산화그래핀에 기능화된 산화철(Fe3O4)을 합성하여 나노섬유 분리막을 제조하였다. 기질 고분자인 PVdF(polyvinylidene fluoride)와 제조된 Fe3O4-GO(MGO)은 전기방사법을 이용하여 나노섬유 분리막을 제조하고, 제조된 막에 대한 비소(Ⅲ,V) 제거 실험을 진행하였다. 먼저 MGO의 비소제거 실험에서 비소(Ⅲ) 이온의 경우 83%, 비소(V)이온의 경우 70%까지 MGO에 대한 비소제거 성능이 확인되었으며, 막의 경우에도 MGO의 함량이 높을수록 비소제거가 각각 80%까지 확인되었다.
        19.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는, 산화그래핀(GO) 및 산화철이 기능화된 산화그래핀(M-GO)을 용매인 dimethylformamide (DMF)에초음파분쇄법을 이용하여 완전히 분산시킨 후, 기질고분자인 polyacrylonitrile (PAN)에 첨가하여 전기방사함으로써, 나노섬유 형태의 복합분리막을 제조하였다. 제조된 나노섬유 분리막은 적층수를 변화시켜 기공크기를 조절하였다. Scanning Electron Microscope (SEM) 분석 결과로부터 약 500 nm 크기의 고른 직경분포를 가진 나노섬유 복합분리막이 제조되었음을 확인하였다. 또한, Raman spectroscopy 분석과 Energy Dispersive x-ray Spectroscopy (EDS) 분석 결과로부터 GO 및 M-GO가 분리막 내에 분산되어 있음을 확인하였다. 최종 나노섬유 복합분리막은 상용막(0.27 µm, 55%)과 유사한 기공특성(0.21~0.24 µm,40%)을 보여주었으며, 수투과도 측정결과 PAN 막에 비해 약 200% 향상된 성능을 보여주었다. 이러한 결과로부터, 전기방사법으로 제조된 나노섬유 복합분리막은 수처리용 분리막으로서 충분한 활용가능성이 있다고 판단된다.
        4,000원
        20.
        2012.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A general synthetic method to make Fe3O4-δ (activated magnetite) is the reduction of Fe3O4 by H2 atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of Fe3O4-δ depending on heat-treatment conditions using FeC2O4·2H2O in Ar atmosphere. The thermal decomposition characteristics of FeC2O4·2H2O and the δ-value of Fe3O4-δ were analyzed with TG/DTA in Ar atmosphere. β-FeC2O4·2H2O was synthesized by precipitation method using FeSO4·7H2O and (NH4)2C2O4·H2O. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. β-FeC2O4·2H2O was decomposed to H2O and FeC2O4 from 150˚C to 200˚C. FeC2O4 was decomposed to CO, CO2, and Fe3O4 from 200˚C to 250˚C. Single phase Fe3O4 was formed by the decomposition of β-FeC2O4·2H2O in Ar atmosphere. However, Fe3C, Fe and Fe4N were formed as minor phases when β-FeC2O4·2H2O was decomposed in N2 atmosphere. Then, Fe3O4 was reduced to Fe3O4-δ by decomposion of CO. The reduction of Fe3O4 to Fe3O4-δ progressed from 320˚C to 400˚C; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The δ-value of Fe3O4-δ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on δ-value.
        4,000원
        1 2