본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응 답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성 에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드 의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예 측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하 였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불 규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.
In this study, the AHP (analytic hierarchy process) technique was used to analyze the risk of expected risk factors and fishing possibilities during gillnet fishing within the floating offshore wind farms (floating OWF). For this purpose, the risks that may occur during gillnet fishing within the floating offshore wind farms were defined as collisions, entanglements, and snags. In addition, the risk factors that cause these risks were classified into three upper risk factors and ten sub risk factors, and the three alternatives to gillnet fishing available within the floating OWF were classified and a hierarchy was established. Lastly, a survey was conducted targeting fisheries and marine experts and the response results were analyzed. As a result of the analysis, among the top risk factors, the risk was the greatest when laying fishing gear. The risk of the sub factors for each upper risk was found to be the highest at the berthing (mooring), the final hauling of fishing net, and the laying of the bottom layer net. Based on the alternatives, the average of the integrated risk rankings showed that allowing full navigation/fisheries had the highest risk. As a result of the final ranking analysis of the integrated risk, the overall ranking of allowing navigation/fisheries in areas where bottom layer nets were laid was ranked the first when moving vessels within the floating OWF was analyzed as the lowest integrated risk ranking of the 30th at the ban on navigation/fisheries. Through this, navigation was analyzed to be possible while it was analyzed that the possibility of gillnet fishing within the floating OWF was not high.
최근 지구 온난화의 영향으로 태풍의 파괴력이 증가함에 따라 부유식 해상풍력발전기의 막대한 유실과 붕괴에 대한 우려가 깊어지고 있다. 부유식 해상풍력발전기의 안전한 운영을 위해 새로운 형태의 탈착형 계류 시스템 개발이 요구되고 있다. 본 연구에서 고 려한 새로운 반잠수식 계류 풀리는 기존의 탈착형 계류 장치에 비해 계류 라인으로 부유식 해상풍력 터빈을 보다 쉽게 탈부착할 수 있도 록 고안되었다. 8MW급 부유식 해상풍력발전기에 적용 가능한 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 검토하기 위해 3D 프린터를 이용하여 축소구조모형을 제작하고, 이 모형에 대한 구조시험을 수행하였다. 축소 모형의 구조시험을 위해 3D 프린팅에 사 용된 ABS 소재의 인장 시편을 제작하고 인장시험을 수행하여 소재의 물성을 평가하였다. 인장시험에서 얻은 재료 특성과 축소모형 구조 시험과 동일한 하중 및 경계 조건을 적용하여 반잠수식 계류 풀리의 유한요소해석을 수행하였다. 유한요소해석을 통해 반잠수식 계류 풀 리의 구조적 취약 부분을 검토하였다. 반잠수식 계류 풀리의 주요 하중조건을 고려하여 구조모형시험을 수행하였으며, 재료의 최대인장 응력 이상이 발생하는 위치에 대해 유한요소해석과 시험 결과를 비교하였다. 유한요소해석과 모형시험의 결과로부터 작동조건에서는 Body와 Wheel의 연결부 구조가 취약한 것으로 파악되었고, 계류조건에서는 Body와 Chain stopper의 연결부 구조가 취약한 것으로 검토되었 다. 축소모형 구조시험에서 나타난 SMP의 구조 취약부는 구조해석의 결과와 일치하는 것으로 나타났다. 연구 결과를 통해 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 실험적으로 검증할 수 있었다. 또한, 본 연구 결과는 상세설계 단계에서 반잠수식 계류 풀리의 구조 강도를 향상시키는데 유용하게 활용될 수 있을 것으로 판단된다.
기존 화석 연료의 고갈 및 환경오염의 문제와 대용량 발전을 위하여 해양환경 및 자원을 이용한 친환경에너지 발전에 대한 연구 및 개발이 증가하고 있으며, 이 중 높은 발전 효율을 가진 해상태양광 발전에 대한 연구가 크게 증가하고 있다. 환경하중이 비교적 약한 내수조건과 달리, 환경하중이 강한 해양에서의 태양광 발전을 위해서는 더 강한 강성의 구조재를 사용해야 한다. 하지만, 구조재의 생 산 가능성, 무게를 포함한 구조물 특성 및 경제적 효율성 등의 제약조건이 발생할 수 있다. 따라서, 본 연구에서는 부유식 방파제를 설 치함으로써 태양광구조물에 작용하는 파랑하중을 감소시켜 구조재의 강성 강화를 최소화하고자 하였다. 부유식 방파제의 크기 및 구 조물로부터의 거리를 변화하여 이에 따른 파랑하중 및 구조재 응력의 감소 정도를 확인하였다. 다수 부력체의 상호간섭을 고려한 파 랑하중의 경우, 고차경계요소법(Higher-Order Boundary Element Emthod)을 이용해 산정하였으며, 구조재에 작용하는 응력은 유한요 소법(Finite Element Method)을 통해 평가하였다. 각 조건에서의 최대응력을 분석 및 비교함으로써 해상태양광 발전 시스템에 대한 부 유식 방파제의 영향을 확인하였으며, 부유식 방파제의 크기가 파랑하중 및 구조재 응력 감소에 큰 영향을 미침을 확인하였다.
LMU(Leg Mating Unit)는 해양구조물의 플로트오버 실치에서 활용되는 장비 중 하나로 충격을 흡수하는 부분과 결합부로 구성된다. 본 연구에서는 최적설계를 통해 부유식 해양구조물의 플로트오버 설치용 LMU의 성능을 개선하여 설계 요구 조건을 만족하는 설계를 개발하였다. 초기설계는 고정식 해양구조물의 플로트오버 설치용으로 개발된 것의 제원을 참조하였으며, 초탄성재료의 거동을 표현하기 위해 Mooney-Rivlin 모델을 활용하였다. 설계민감도해석 결과를 바탕으로 중요도에 따라 설계 변수들을 선별하였고, 진화 알고리듬 기반 최적설계를 수행하였다. 최적설계 문제에서 목적함수는 LMU의 중량이며, 제약 조건은 LMU에 작용하는 최대 폰-미세스 응력과 LMU의 성능을 평가할 수 있는 반발력이다.
신재생 에너지 자원중 풍력발전은 비약적인 기술 발전과 시장 규모가 급속하게 성장하고 있다. 최근 육상풍력발전단지의 공간적 한계, 환경 문제 등으로 인하여 설치 공간이 해상으로 이동되었고, 더욱 풍부한 풍황 조건을 가진 깊은 수심에 설치되는 부유식 해상 풍력단지의 개발이 활발하게 진행되고 있다. 해상교통관점에서 해상풍력단지의 최적위치 선정은 선박과 풍력기들의 간섭을 최소화 하고 사고 확률이 적은 곳이며, 선박 밀집도가 낮은 해역이 최적위치로 선정된다. 본 연구에서는 유전 알고리즘 기반의 계절별 1주일 기간 선박자동식별장치 데이터를 유전자 및 염색체로 구성하였다. 80개의 유전자로 구성하고 유전 알고리즘의 적합도 평가를 거쳐 부유식 해상 풍력단지의 계절별 최적위치를 선정하였다. 더 나아가 계절별 최적위치 점수를 합산하여 최종 최적위치를 선정하였다. 분석 해역에서 최적위치는 11개로 나타났으며, 해상교통관점에서 유전 알고리즘을 통한 최적위치 선정이 적용 가능함을 확인하였다.
This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.
Considering a rigorously fluid-structure interaction, a method for an earthquake response analysis of a floating offshore structure subjected to vertical ground motion from a seaquake is developed. Mass, damping, stiffness, and hydrostatic stiffness matrices of the floating offshore structure are obtained from a finite-element model. The sea water is assumed to be a compressible, nonviscous, ideal fluid. Hydrodynamic pressure, which is applied to the structure, from the sea water is assessed using its finite elements and transmitting boundary. Considering the fluid-structure interaction, added mass and force from the hydrodynamic pressure is obtained, which will be combined with the numerical model for the structure. Hydrodynamic pressure in a free field subjected to vertical ground motion and due to harmonic vibration of a floating massless rigid circular plate are calculated and compared with analytical solutions for verification. Using the developed method, the earthquake responses of a floating offshore structure subjected to a vertical ground motion from the seaquake is obtained. It is concluded that the earthquake responses of a floating offshore structure to vertical ground motion is severely influenced by the compressibility of sea water.
신재생, 친환경 에너지에 대한 관심의 증가로 최근 상당수의 풍력 발전기가 설치되고 있다. 특히, 육상과 달리 부지 확보의 어려움도 없고 고품질의 바람을 얻을 수 있다는 점에서 해상 풍력 발전기가 더욱 주목을 받고 있다. 이와 같은 장점을 가진 해상 풍력 발전기는 육상의 조선소 등에서 제작된 후, 해상 크레인을 이용하여 운용 지점까지 이송되어 설치되는데, 이때 그 크기의 거대함과 고가라는 이유로 무엇보다 안전이 보증되어야 한다. 따라서 본 연구에서는 해상 풍력 발전기의 이송 및 설치 시 안전성을 보증하기 위한 근거로서, 다물체계 동역학 기법을 활용하여 해상 크레인에 연결된 해상 풍력 발전기의 동역학 해석을 수행하였다. 그 결과, 본 기법이 해상 풍력 발전기의 이송 및 설치방법에 대한 검증용으로 충분히 활용 가능함을 확인할 수 있었다.
A large floating structure is attracting great attention in recent years from the view of ocean space utilization. Its huge scale in the horizontal directions compared with the wavelength and relatively shallow depth make this type of floating structure flexible and its wave-induced motion be characterized by the elastic deformation. In this paper, a boundary integral equation method is proposed to predict the wave-induced dynamic response mat-like floating offshore structure. The structure is modeled as an elastic plate and its elastic deformation is expressed as a superposition of free-vibration modes in air. This makes it straightforward to expand the well-established boundary integral technique for rigid floating bodies to include the hydroelastic effects. In order to validate the theoretical analysis, we compare with the experimental result of reduced model test. Satisfactory agreement is found between theory and experiment.