검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, Car weight reduction has become an important development goal to improve fuel efficiency. Car seat frame is a key part of the weight reduction. Existing steel seat frames have the advantages of high rigidity and durability, but have the disadvantage of heavy weight. Recently, Almag material, which are alloy of aluminum and magnesium, is attracting attention because of excellence in strength and weight reduction. At first, the core stiffness members of the seat frame are selected to optimize the weight of the seat frame. And then strength analysis and natural frequency analysis are performed for the existing steel seat frame and Almag seat frame. Based on these analysis results, optimal thickness of the Almag seat frame are determined by an automation program using a genetic algorithm.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the development of eco-friendly vehicles such as electric vehicles, weight reduction has become a very important design target. Seat weight reduction is very important in vehicle weight reduction. In this study, the energy absorption characteristics of Almag material, an alloy of aluminum and magnesium, and mild steel SAFH440, SAFH590, SAFC780, and SAFH980 were analyzed to obtain a true stress versus true strain curve that was correlated with the test. By performing the seat frame structure analysis using the obtained analysis material property, it was possible to compare the deformation between lightweight material, Almag and mild steel materials. In addition, it was confirmed that the weight reduction effect was 25.8% when applying Almag, an equivalent lightweight material that gives the same maximum deformation as SAFH980, a high-strength mild steel.
        4,000원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automobile development, vehicle weight reduction has become a very important goal. Seat weight reduction is a large portion of vehicle weight reduction. In this study, a specimen tensile tests were conducted on the Almag material, which is an alloy of aluminum and magnesium, and also conducted on SAFH440, SAFH 590, SAFC780, and SAFH980, which are mild steel materials used in the seat frame. The tensile specimen tests were carried out in two speed; 2mm/s and 4mm/s, and the obtained stress to strain curve was converted to the analysis material card of true stress to true strain curve to be used in the seat structural analysis. The constructed analysis material card was used in the specimen tensile finite element analysis, and the analysis result was able to obtain the stress to strain curve similar to the test result.
        4,000원
        4.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.
        4,000원
        5.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Modularization is an important benefit to overall project cost, such as construction period, manpower and logistics. In order to establish a successful modularization strategy, the optimum cost can be realized based on the Envelope Size which is allowed to be transferred to the plant site through analysis of each shape of the module. Through the analysis of the plant structure, the Envelope Size that can be transported on site in units of sizes suitable for maritime and onshore is provided, and finite element method is applied to the existing materials (A36, A572) and domestic materials (SS400, SM490, SWH400) and analyzed the results of the analysis to obtain domestic materials applicable to the plant structure frame.
        4,000원
        6.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Finite Element analysis were carried out to investigate the deformation behaviours of a buckled automotive seat frames made of three different types of materials, i.e., SAPH440, Al6082-T6 and Al7021-T7, when they were subject to external load, based on the ECE R14 regulation to achieve lightweight structure. Also, several thicknesses were applied to the seat frame structures of each material for characterising deformations. It was found that light weight seat frame structure was obtained compared to conventional steel structure when it was made of aluminium under the condition of satisfying ECE R14 regulation. Interpretation result, when changing from SAPHH440 material has a thickness of 1.5mm to Al material has a thickness of 3.0mm, that could checking weight lightening about 47%.
        4,000원
        7.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, analysis on the stiffness of the headrest, the stiffness of front-rear load and the torsion of cushion frame was performed using finite element method in order to investigate the properties of the stress-deformation by material characteristics according to the test requirements of FMVSS (Federal Motor Vehicle Safety Standard). The results are shown that AZ31 (Mg alloy) and A365 (Al alloy) with low modulus of elasticity and density have higher strain rate than steel in terms of stress-deformation and meet the standards for safety within 108 mm of the maximum amount of deformation. Considering it’s safety and durability, however, the selection of AZ31 for light weight seems difficult to gain the reliability because it causes an excessive deformation, and therefore it is not expected to be used for recliner where stress is concentrated and also the bracket linking rail and cushion frame.
        4,000원
        8.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 패시브 진돈제어시스템을 설치한 실대물 K형 철골브레이스 골조의 실험결과를 다루었다. 패시브 진동제어시스템은 점탄성물질을 이용하여 새롭게 개발된 댐퍼를 사용하였다. 이 실험모델의 진동제어 효율성을 확인하고 철골조 브레이싱의 진동반응특성을 조사하기 위하여 일련의 실험을 행하였다. 자유진동실험결과 댐퍼를 설치시 설치하지 않은 경우와 비교하여 3배정도의 진동제어능력을 나타냈다. 점탄성물질 난류댐퍼의 효율성은 진동실험에 의하여 확인되었다.
        4,000원
        9.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In case of rectangular lattice dome which shearing rigidity is very small, it has a concern to drop Buckling strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is one with roof material. In a case like this, shearing rigidity of roof material increases buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. In case of analysis is achieved considering roof material that adheres to lattice of dame, there is method that considers the rigidity that use effective width frame as method to evaluate rigidity of roof material. therefore, this study is aimed at deciding effective width of roof material united with rectangular lattice dome to evaluate rigidity of roof material by effective width of frame and investigating how much does rigidity of roof material united with lattice of dome increase buckling-strength of the whole of structure according to rise-ratio. Conditions of loading are vertical-type-uniform loading. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.
        4,000원
        10.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This thesis investigates vibration response characteristics of building frames in which dampers are installed. The frames belong to passively vibration-controlled. Structures which utilizes energy dissipation of mechanical dampers provided in the structure. In this thesis, a turbulent flow damper sealed by visco-elastic material was dealt with as the device of passive vibration control. To investigate the resisting force characteristics of the damper, harmonic vibratration tests were carried out. Based on the test results, a theoretical model of the damper resistance was presented and a method of identifying the model parameters was proposed. Shaking table tests of the frame with and without the dampers were carried out and the effectiveness of the damper was examined. The response of the frame with the dampers was reduced to 1/2 or 1/3 of the cases without the damper.
        4,200원
        11.
        2016.10 서비스 종료(열람 제한)
        In this paper, the finite element analysis of RC frame with concrete compressive material models proposed by many researches were conducted. As a results of FEA, the concrete model suggested by Saenz was compatible than other concrete models from the perspective of initial stiffness and maximum strength.
        12.
        2012.05 서비스 종료(열람 제한)
        This paper presents the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete (RC) frame is modeled for FE sensitivity analysis followed by direct differentiation method (DDM) under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth reinforced steel model under quasi-static loading. However, the smooth steel material shows continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforced steel is carefully noticed. Cumulative distribution function (CDF) curves have shown minor change of failure probabilities due to the smoothness effect.