Hydride analysis is required to assess the mechanical integrity of spent nuclear fuel cladding. Image segmentation, which is a hydride analysis method, is a technique that can analyze the orientation and distribution of hydrides in cladding images of spent nuclear fuels. However, the segmentation results varied according to the image preprocessing. Inaccurate segmentation results can make hydride difficult to analyze. This study aims to analyze the segmentation performance of the Otsu algorithm according to the morphological operations of cladding images. Morphological operations were applied to four different cladding images, and segmentation performance was quantitatively compared using a histogram, betweenclass variance, and radial hydride fraction. As a result, this study found that morphological operations can induce errors in cladding images and that appropriate combinations of morphological operations can maximize segmentation performance. This study emphasizes the importance of image preprocessing methods, suggesting that they can enhance the accuracy of hydride analysis. These findings are expected to contribute to the advancements in integrity assessment of spent nuclear fuel cladding.
Korea Atomic Energy Research Institute (KAERI) has been operating the Post Irradiation Examination Facility (PIEF). The facility has many PIE equipment and one of them is a hydrogen analyzer for measuring hydrogen contents in Zr cladding of spent fuel. The cladding tube of fuel is oxidized in the core environment of high temperature and pressure and absorbs some of the hydrogen generated during the oxidation. The hydrogen content increases with the increase of burn-up, and causes hydriding of the material, which degrades the mechanical properties. Therefore, hydrogen content analysis of the cladding tube is required for the performance and integrity evaluation of spent fuel. In PIEF, the hydrogen analyzer extracts hydrogen gas from Zr cladding by the hot extraction method. The hydrogen gas flows with inert gas and oxidizes to H2O through a CuO reagent. Finally, an IR detector measures the hydrogen amount from the absorbed IR intensity at a specific wavelength. Because the equipment is in the glove box and has some consumable parts, the maintenance work was performed as a radiation work.
The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.
This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.
This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.
Currently, the Korean nuclear industry uses ZIRLO as material for nuclear fuel cladding(zirconium alloy). KEPCO Nuclear Fuel is in the process of developing a HANA alloy to enable domestic production of cladding. Cladding manufacture involves multistage heat treatments and pickling processes, the latter of which is vital for the removal of defects and impurities on the cladding surface. SMUT that forms on the cladding surface during such pickling process is a source of surface defects during heat treatment and post-treatment processes if not removed. This study analyzes ZIRLO, HANA-4, and HANA-6 alloy claddings to extensively study the SEM/EDS, XRD, and particle size characteristics of SMUT, which are second phase particles that are formed on the cladding surface during pickling processes. Using the analysis results, this study observes SMUT formation characteristics according to Nb concentration in Zr alloys during the washing process following the pickling process. In addition, this study observes SMUT removal characteristics on cladding surfaces according to concentrations of nitric acid and hydrofluoric acid in the acid solution.
Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, Y2O3-coated tubes were scanned by a laser beam, which induced penetration of Y2O3 particles into the substrates. The thickness of the ODS layer varied from 20 to 55 μm depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20–50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.