최근에 개발된 시스템 온칩 프로세서는 통합 성능을 요구하는 작업의 가능성을 제공하였으며, 이러한 작업은 예전에는 우수한 성능을 가진 컴퓨터의 도움만으로 수행 할 수 있는 것이었다. 본 논 문에서는 실제 환경 하에서 자율 이동 장치의 GPS 위치측정을 개선하기 위해 임베디드 영상처리기 법을 활용하는 고급 제어 시스템을 소개한다. 메인 컨트롤 시스템은 Raspberry PI 개발 보드에 통합 된 ARM(SoC.) 아키텍처를 기반으로 한다. 제시한 제어 시스템은 실시간 비디오 캡처, 전력-효율적 이미지 처리 작업, 예를 들어 (임계 값 처리, 이진화, 모션 감지 등) 및 비디오와 같은 스트리밍 결과 이미지를 처리 할 수 있다. GPS 정밀도는 WAAS(EGNOS) 위성을 활용하여 다만 3 미터의 정밀도를 제공 할 수 있다. 제안한 솔루션은 도로와 보도의 경계를 감지하기 위해 GPS 솔루션 및 임베디드 이 미지 처리를 사용한다. 일부 도로나 통로가 길가의 흰색 선을 제공하지 않기 때문에 제시한 알고리 즘은 길가의 흰색 선을 검출하지 않고 보편적인 도로나 보도를 감지한다. 제안한 시스템은 소형 이 동장치에 사용할 수 있다. 예를 들어, 생산 공간 사이의 긴 거리를 가진 중공업 산업 단지에서 부품 수송을 위한 이동장치 등에 사용할 수 있다.
In order to determine home delivery service routes, conditions specified for each parcel such as customer-assigned delivery times and parcel contents should be considered, so the conventional route search algorithms have some limits to be applied for home delivery services. In this study, a multi-purpose route searching algorithm is suggested in order to deal with every requirement of deliveries that vary in delivery distances, contents and appointed times. A simulation study to verify the performances of the system with example data of Seoul and Kyungki provinces shows that it significantly improves the customer satisfaction and the productivity of delivery businesses.
"Domestic delivery service" is defined the service to deliver goods or packages from point of senders to point of receiver. With the characteristics of door to door, it is must a service provider should know the exact location of destination assuring best utilization of moving path. Generally, location information consist of postal code and address only, which result in difficulties to identify the precise location of destination. It is relatively less correlated between the information that address refers and practical location in Korea address system. For example, the next door to house number 100 is not always house number 101. Therefore, a delivery man additionally uses a paper map or a GPS navigation which carry extra job to input every code of location to the device in order to know precise location. It is also very inconvenient that every delivery man identify the location that address information refers and make a personal decision of the optimum moving path dropping each destination without calculating provisioning process of whole delivery path. As explained above, it is inefficient to find information delivery service required and to generate the optimum path. In results, these difficulties bring in delay of service and increase of cost. In this point, the contents of the thesis suggest a GPS navigation system easy to obtain accuracy of delivery information which enables to automate optimum moving path based on RFID which contains location information.
This paper describes an alignment algorithm that estimates the initial heading angle of AUVs (Autonomous Underwater Vehicle) for starting navigation in a sea area. In the basic dead reckoning system, the initial orientation of the vehicle is very important. In particular, the initial heading value is an essential factor in determining the performance of the entire navigation system. However, the heading angle of AUVs cannot be measured accurately because the DCS (Digital Compass) corrupted by surrounding magnetic field in pointing true north direction of the absolute global coordinate system (not the same to magnetic north direction). Therefore, we constructed an experimental constraint and designed an algorithm based on extended Kalman filter using only inertial navigation sensors and a GPS (Global Positioning System) receiver basically. The value of sensor covariance was selected by comparing the navigation results with the reference data. The proposed filter estimates the initial heading angle of AUVs for navigation in a sea area and reflects sampling characteristics of each sensor. Finally, we verify the performance of the filter through experiments.
This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.
This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.
It has been recognized that the risk from the vulnerability of GPS can lead to the extreme damage in the infrastructure of the civil and military in recent years. As an example, the intentional interference to GPS signal, named GPS jamming, was really performed to misguide GPS guided weapons during Iraq war in 2003, and the fact has also followed by the serious issues on GPS in civilian community. In the modernized military society, the navigation warfare(NAVWAR) based on the GPS jamming has been emerged and introduced as a military operation. The intentional interference to the future global navigation satellite system(GNSS) involving GPS must be also an important issue to civilian users in near future. This study is focused on the fundamental research prior to the research on "Potential principle of NAVWAR" under NAVWAR of the future warfare. In this paper, we would study on the investigation of NAVWAR based on electronic warfare(EW) and analyze characteristics of the jamming against GNSS's receivers. Then the general mechanism on GNSS jamming is proposed.
This paper describes performance improvement of GPS/DR Integration system using area decision algorithm and vehicle movement information. In GPS signal blockage area, i.e., tunnel and underground parking area, DR sensor errors are accumulated and navigation solution is gradually diverged. We use the car movement information according to moving area to correct the DR sensor error. Also, vehicle movement is decided as stop, straight line, turn and movement changing region through DR sensor data analysis. The car experiment is performed to verify the supposed method. The results show that supposed method provides small position and heading error than previous method.
최근 항공기, 자동차, 선박을 포함하여 다양한 분야에서 무인시스템에 관한 연구 개발이 이루어지고 있다. 우리나라에서도 IT 기술의 발달과 함께 무인시스템에 관한 연구가 활발히 진행되고 있지만 아직 개발 실적은 미미한 수준이다. 이 연구에서는 바지(barge)선형의 초소형자율 무인선박(USV)을 개발하고자 하였다. 자율항법 알고리즘 개발에 GPS센서의 위치 정보를 기반으로 대권항법 계산식을 적용하였으며, 프로그래밍은 NI사의 LabVIEW 8.2를 이용하였다. 조타제어는 펄스진폭변조 방식으로 하였다. 또한, 엔진시스템은 전동모터 및 전자 변속기로 구성하였고, 엔진시스템 냉각방식으로 DC모터펌프를 이용한 해수 직접냉각방식을 채용하였다. 무인선박을 자체 설계 제작하고, 해상실험을 통해 자율운항 알고리즘의 유효성을 검증하였다.
현재 육상에서의 GPS는 자동차 항법체계(Car Navigation System)와 개인휴대용 단말기를 이용한 위치정보체계 등이 활발히 활용되고 계속 연구되고 있는 추세에 있지만 해양에서는 그렇지 못한 실정으로 원래 GPS는 선박의 항해용 목적으로 개발된 것이지만, 해상에서 선박의 운항에 정확도는 크게 어려움을 주지 않는다는 이유로 선박의 항로확인을 위한 근사적인 위치의 표현만을 수행해왔다. 최근 항만이 복잡해지고 선박의 증가로 해양에서도 선박의 정밀한 유도가 필요하게 되었다. 본 연구에서는 GPS에서 사용하고 있는 타원체인 WGS84 타원체의 자리좌표를 우리나라에서 사용하고 있는 타원체인 BESSEL 타원체의 지리좌표로 변환하는 요소인 3-parameter에 의한 타원체변환알고리즘 및 육도와 해도에서 사용하고 있는 평면 직교좌표계인 TM투영과 UTM투영의 알고리즘제작 하였다. 또한, 현재 항법용 GPS 센서가 가지고 있는 정확도를 검증하기 위해 GPS의 정적측량, 동적측량에 의한 오차량을 비교검토하였으며, 선박의 항로추적을 위해서 선박에서 수신된 위치 정보의 편차량을 분석하였다. 이렇게 검토된 자료를 기본으로 하여 실시간 선박항로를 추적할 수 있는 저가의 항로추적시스템 개발을 본 연구의 최종목표로 연구를 수행하였다.
현재 범세계위치결정체계(GPS)와 추측항법(DR), 기타 장치를 결합한 육상차량항법시스템이 사용되고 있다. 그리고 GPS는 육상항법시스템으로 널리 이용되고 있지만, 도심지 등에서 가시위성의 부족으로 차량의 동적 위치결정에 적절하지 못하다. 따라서 본 연구에서는 GPS의 단점을 보완하기 위해 GPS/GLONASS 결합항법시스템을 이용하여 차량의 동적위치를 결정하였다. 실험결과 도심지에서 많은 장애물과 가시위성에도 불구하고 GLONASS 위성의 부가로 높은 자료획득률을 보여 GPS/GLONASS의 결합항법시스템으로 차량의 동적 위치를 연속적으로 획득할 수 있었다. 그러므로 GPS/GLONASS 결합항법시스템은 도로의 교통흐름의 통제와 효율적 관리에 응용할 수 있을 것으로 사료된다.
On this paper, the traditional methods for the measurement of ship's maneuverabilities during the sea-trial of newly built ship are summarized and new methods for the same measurement using Integrated Navigation System and GPS are introduced. After various sea-trials of training ship "HANNARA" which are equipped with modern INS and GPS system, the results are compared and analysed. The purpose of this paper is to present more accurate methods of measurement of ship's maneuverabilities during sea-trial using INS and GPS which are gradually becoming the basic navigational equipments on many newly constructed vessels.d vessels.