연구는 참외 재배 지에서 흰가루병, 담배가루이 및 두점박이응애가 동시에 발생하였을 때 45, 40, 35°C (대조구)의 온도에서 측창으로 환기 처리 시, 온실 내 온 ․ 습도의 변화, 병충해 발생과 잎말림, 그리고 개화조절에 미 치는 효과를 검토하였다. 3월 3일 ‘히든파워’ 대목에 접붙여진 ‘알찬꿀’ 참외를 40cm 간격으로 격리상에 심었고, 위 에 언급한 병해충이 모든 처리구에서 발생한 6월 18일부터 7월 13일까지 처리하였다. 온실의 온도는 맑은 날에는 설정 온도 지점까지 증가되었고, 45°C 환기 처리에서 고온 고습이 약 9시간 동안 유지되었다. 주간 최고 기온과 최 저 상대습도 차이는 45°C 환기 처리에서 가장 높았다. 환기 처리 11일 후에는 흰가루병과 두점박이응애 피해가 45°C 환기 처리에서 거의 회복되었지만 40°C와 35°C에서는 그렇지 않았다. 처리 14일 후, 담배가루이와 두점박이 응애 밀도는 45°C에서 유의하게 감소하였으나 흰가루병 증상은 유의하게 감소하지는 않았다. 잎말림은 고온에서 유발되었으나 45°C에서도 심하지 않았다. 처리 26일 후, 새로 나온 줄기의 15 마디의 개화수를 조사한 결과, 45°C에 서 암꽃이 전혀 나오지 않았고 수꽃은 1.2개로 나타났다. 이상의 결과는, 고온기에 45°C의 고온에서 2-3주간 환기 처리는 온실 내부의 고온 고습을 유도하여 흰가루병, 담배가루이, 두점박이응애를 통제하고, 개화를 억제하여 참외 의 영양 생장을 회복할 수 있는 방법으로 사료되었다.
본 연구는 시설토마토 재배지에서 push-pull 전략을 이용해 담배가루이와 천적곤충의 행동을 제어함으로써 담배가루이(Bemisia tabaci)를 친환경적으로 방제하기 위한 기술을 개발하고자 수행하였다. 담배가루이는 노란색에 유인율이 가장 높았으며, 520 nm의 광원에는 유인반응을 복합광원인 450 + 660 nm의 광원에는 회피반응을 보였다. 천적곤충인 담배장님노린재(Cyrtopeltis tenuis)와 미끌애꽃노린재(Orius laevigatus)는 모두 520 nm의 광원에 가장 높은 유인반응을 보였다. 휘발성 물질로는 ocimene과 carvacrol에 대해 기피반응을, methyl isonicotinate에는 유인반응을 보였다. 토마토 온실에 메밀을 투입하였을 경우 천적곤충인 담배장님노린재의 밀도는 무처리 대비 15일간 약 16배로 높게 유지되었다. Push-pull 세부전략들을 종합 처리한 결과, 처리 50일 경과 후 담배가루이의 트랩당 밀도는 무처리 대비 3배 이상 낮게 나타났으며, 이에 따른 시기 별 방제효과는 시간이 경과함에 따라 증가하는 경향을 보인 가운데 최고 68.7%였다.
This study was conducted to develop a technology for environmentally friendly control of Bemisia tabaci by a push-pull strategy in tomato greenhouse. B. tabaci was most attracted to the light source of 520nm, whereas it showed an avoidance response to the complex light treatment of 450+660nm. Two natural enemies, Nesidiocoris tenis and Orius laevigatus were attracted to 520nm. B. tabaci was repellent to volatile organic compounds, ocimene and carvacrol, while methyl isonicotinate showed attractant response. When buckwheat was added into the greenhouse, the density of N. tenis was maintained at about 16 times higher for 15 days. As a result of the combined treatment of push-pull strategy, the density of B. tabaci was 3 times lower and the control effect increased with time and reached up to 68.7%.
토마토 작물에 발생하는 B. tabaci에 대한 예찰을 위해 시설재배지뿐만 아니라 노지 재배에서도 노란색 점착 카드트랩이 주로 사용되고 있다. 그러나, 예찰트랩의 색상과 굴절되는 빛의 강도 및 환경 변화에 따라 B. tabaci 유인력은 차이를 나타내고 있다. 따라서, 온실에 발생하는 B. tabaci 성충에 대한 light 트랩의 시설 재배 지내의 이용 가능성을 평가하기 위해 white light (450- 625nm) 및 yellow light (590nm) 트랩과 광원이 장착되지 않은 트랩을 이용하여 유인 활성을 비교하였다. 본 시험결과 광원별 B. tabaci 포획밀도는 yellow light 트 랩(525 nm)에서 168±7.6(마리/트랩)로 가장 높은 유인 활성을 나타내었으며, white light 트랩에서는 106±4.6( 마리/트랩)으로 다소 낮은 개체수가 포획되었다. 그러나 대조구로 사용된 광원이 설치되지 않은 트랩의 경우 광원이 설치된 트랩보다 적은 60±4.8(마리/트랩)의 개체수가 포획되었다. 따라서, yellow light trap과 white light 트랩에서 높은 B. tabaci 성충의 유인력을 나타내었다. 이러한 결과를 바탕으로 yellow light 및 white light 트 랩이 토마토 시설 재배지에서의 B. tabaci 성충에 대한 친환경적 해충 방제법의 일환으로 적용 될 수 있을 것으로 판단되었다.
춘천지역 농가 및 강원도농업기술원 내 시험포장에서 반촉성재배토마토(2~6월)에서 트랩을 이용한 주요 해충의 발생밀도와 천적 등을 이 용한 방제효과를 조사 하였다. 토마토 재배농가에서 주로 사용하는 약제와 유기농자재의 천적곤충에 대한 독성평가도 수행하였다. 반촉성재배 시 발생되는 주요 해충은 온실가루이(Trialeurodes vaporariorum)와 총채벌레류이었다. 온실가루이의 경우 4월 중순경부터 발생하기 시작하여 5 월 중순 이후 발생이 증가하였고, 총채벌레류는 4월 상순 경 발생을 시작하여 6월 이후에 증가하는 경향을 보였다. 저독성약제 선발시험을 통해 온실가루이와 총채벌레의 천적인 온실가루이좀벌과 미끌애꽃노린재에 대해 60% 이하의 독성을 보이는 살충제 1종(spiromesifen SC), 살균제 1종(cyazofamid SC) 및 님 추출물이 함유된 유기농자재 외 1종을 선발하였다. 이상의 결과에서 제시한 천적중심 관리모델을 적극적으로 활용한 다면 토마토 반촉성 시설재배 시 온실가루이와 총채벌레를 효율적으로 관리할 수 있을 것으로 기대된다.
The attraction of the tomato whiteflies Trialeurodes vaporariorum, to four type of traps combined with a colored stickyboard and an light emitting lamp was investigated in 2016 in an tomato greenhouse. The colors of the sticky boardswere yellow and the peak wavelengths of the light emitting traps were 470nm(blue), 590nm(yellow) and 450~625nm(white).The type of traps was designed to directly illuminate the plants with an light emitting lamp and set along the lowerpart of the crops whose each sticky board was directed to the plants. This experiments showed that T. vaporariorumadults on average preferred (p>0.05) traps in blue lights(110±3.2adults/trap) compared to traps in yellow lights (71±1.4adults/trap)and white light traps(45±1.1adults/trap). The blue light trap(470nm) showed the most attractive to T. vaporariorum adults,followed by a similarly attraction to the yellow light trap(590nm), whereas the control (no light trap) was little attractiveto T. vaporariorum adults.
The greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is a phloem-feeding pest that causes serious damages in vegetables and ornamental crops by direct feeding and causing diseases such as sooty mold. For the better management of T. vaporariorum, within-greenhouse and -plant distribution of this pest was investigated in strawberry greenhouses in Andong. Ten strawberry plants for each category were randomly selected and examined. Adults per plant was recorded by visual observation, and eggs and nymphs per trifoliate leaf were counted under microscope. Adult, egg, and nymph populations were all more abundant in border rows than in middle rows. The number of nymphs were found more in lower canopy in both border and middle rows, but egg density was higher in upper canopy of border plants. No correlation was found between sticky trap count and population density on plants. These informations would be important for the development of efficient monitoring and control measures of greenhouse whitefly.
Studies have reported differential attractiveness of yellow, white or blue sticky cards to greenhouse pests, especially to Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Trialeurodes vaporariorum Westwood (Homoptera: Alyerodidae). The main aim of this study was to determine whether yellow or blue sticky card offers a better option in monitoring or mass trapping these sympatric greenhouse pests. Laboratory study that included a multiple choice and no-choice tests to observe the attractiveness of blue, yellow, white or green sticky card to F. occidentalis and T. vaporariorum was conducted. Also, a glasshouse study was conducted to determine better composite attractiveness of yellow or blue sticky card. F. occidentalis showed higher preference to blue and yellow sticky cards in laboratory study and blue captured the highest number of F. occidentalis in glasshouse followed by the yellow. However, while the blue sticky card captured few T. vaporariorum, the yellow sticky card captured the highest number of T. vaporariorum in both laboratory and glasshouse tests. Since yellow sticky card received composite affinity of both F. occidentalis and T. vaporariorum, placement of yellow sticky card for the greenhouse pests, rather than blue or yellow targeted to individual species, is recommended for economical and optimal monitoring and/or mass trapping success of the tested greenhouse pests.
Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum, were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator. The population phenology model of T. vaporariorum was developed and simulated. Leaf temperature on reversed side of cherry tomato leafs was monitored according to three tomato plant positions (top, >1.6m above the ground level; middle, 0.9 - 1.2m; bottom, 0.3 - 0.5m) using an infrared temperature gun. Air temperature was monitored at same three positions using a temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures. The number of T. vaporariorum immatures was counted by visual inspection in three positions to verify the performance of DYMEX simulation. A significant positive correlation between the observed and the predicted numbers of immature and adults was found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with air temperatures. This study demonstrated that the population dynamics of T. vaporariorum was affected greatly by the leaf temperatures, rather than air temperatures in cherry tomato greenhouses. This work was supported by Development of field-oriented model for forecasting outbreak of diseases or insect pests based on GIS and IT Program (R1003852) from Rural Development Administration, Republic of Korea.
Effectiveness of Encarsia formosa (Hymenoptera: Aphelinidae) to control Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) was investigated in the commercial tomato greenhouse from January to June, 2010. Densities of T. vaporariorum were monitored using the yellow sticky trap for adult, and a lupe (x10) for 4th instar nymph and pupa at 1 week interval. Tomato seedlings were transplanted in mid-January and the nymph and adult of T. vaporariorum were first discovered in February 4th. E. formosa was applied as a mummy card at a recommended density (3 parasitoids per 1m2) at 2 weeks interval for 8 times. Mummy cards were collected 2 weeks later and the emergence and survival ratio of E. formosa were examined. Density of adult T. vaporariorum was significantly lower in the treatment plot (F=42.48, p=0.0001). The control efficiency ranged from 57.3% to 88.5%. The nymphal density was also significantly lower in the treatment plot (F=8.85, p=0.0053). The control efficiency was 84% on 25th March, 75% on 18th May and 95% on 25th May. Maximum 50% parasitism by E. formosa occurred in the treatment plot. The emergence and survival rates of E. formosa on mummy cardboards that were released in the greenhouse during February to March were only 53% and 41%, respectively. These rates increased to >70% as the temperature rises.
two different sizes of yellow sticky traps (small trap: 9.6×8.0cm; large trap: 9.6×16cm) for sampling greenhouse whitefly (GHWF), Trialeurodes vaporariorum (Westwood), adults in four commercial cherry tomato greenhouses. The patch size of GHWF immatures between plants was also estimated using visual counts. Two variogram models were fitted to the empirical variograms developed from the data collected by each sampling method. All the variograms reached the sill indicating the presence of spatial dependence among the spatial data obtained by the two sampling methods. For GHWF adults on sticky traps the range of variogram (a measure of attractive distance) was not different between the two trap sizes. This result indicated that the attractive distances of the two different yellow sticky traps were very similar. The ranges of the variograms for the visual count of immatures on plants were always less than those for adults, indicating that the attractive distance of the traps for GHWF adults extends beyond the patch size for immatures on cherry tomato plants. These data have implications for developing sampling plans for the management of GHWF in tomato greenhouses.