Herein, a new and generic strategy has been proposed to introduce uniformly distributed graphitic carbon into the nanostructured metal oxide. A facile and generic synthetic protocol has been proposed to introduce uniformly distributed conducting graphitic carbon into the Co3O4 nanoparticles ( Co3O4 NPs@graphitic carbon). The prepared Co3O4 NPs@graphitic carbon has been drop casted onto the portable screen-printed electrode (SPE) to realize its potential application in the individual and simultaneous quantification of toxic Pb(II) and Cd(II) ions present in aqueous solution. The proposed Co3O4 NPs@graphitic carbon-based electrochemical sensor exhibits a wide linear range from 0 to 120 ppb with limit of detection of 3.2 and 3.5 ppb towards the simultaneous detection of Pb(II) and Cd(II), which falls well below threshold limit prescribed by WHO.
In this article, nitrogen (N) doped porous carbon nanofibers (N-PCNF) were prepared by carbonization of polymer-silica nanocomposite precursor, and its application for heavy metal ion removal was demonstrated. Carbon–silica composite nanofibers were obtained by carbonization of electrospun polyacrylonitrile (PAN)-silica nanofiber composites. Subsequent selective etching of silica porogen produced porous carbon nanofibers (PCNF). It was revealed by surface characterization with X-ray photoelectron spectroscopy (XPS) that the surface of the PCNF was nitrogen-doped because N atom from cyanide group in PAN chains remained in the hexagonal carbon structure. The use of the obtained N-PCNF for heavy metal ion ( Hg2+) removal was demonstrated using a simple adsorption test apparatus and 5, 10, 15, 20-tetraphenylporphine tetrasulfonic acid (TPPS) as an indicator. The N-PCNF showed a removal efficiency of 96 and 99% in 10 and 120 min, respectively, indicating a maximum heavy metal ion adsorption capacity at pH 7.0. In addition, heavy metal ion adsorption behavior was also analyzed using common adsorption isotherms. This article provides important information for future research activities regarding control over hazardous substances.
In this research, Pb (II), Co (II), and Ni (II) toxic heavy metal ions adsorption from synthetic aqueous system have been studied using the activated carbon prepared from Citrus limetta leaves. Therefore, the relationship between the adsorption parameters (solution pH, dosage of adsorbent, temperature, initial concentration of the ions, and adsorption time) and the removal percentage of the prepared adsorbent have been investigated. Additionally, the adsorbent was analyzed through BET, SEM, EDX, FTIR, and XRD analyses. According to the results, the maximal adsorption efficiencies for heavy metal ions were achieved in pH = 6, the adsorbent dosage of 1 g/L, temperature = 25 °C, the ion initial concentration of 5 mg/L, and contact time of 60 min, which were 99.53%, 98.63%, and 97.54% for Pb, Co, and Ni ions, respectively. Based on Kinetic studies, the performance of pseudo-second-order kinetic model was better than pseudo-first-order model for the description of time-dependent behavior of the process. Additionally, the equilibrium data were fitted by Langmuir and Freundlich isotherms, while the former performed better than the latter. The maximum adsorption capacity values for Pb, Co, and Ni ions were achieved equal to 69.82, 60.60, 58.139 mg/g, respectively. Considering the thermodynamic data, the studied processes were exothermic and spontaneous.
가속화되는 산업화로 인해 중금속 이온의 침출이 환경문제로 떠오르고 있다. 수질 정화를 위한 몇 가지 방법 중 기능성 고분자 섬유를 이용한 흡착은 효율적이며 경제적이라는 장점이 있다. 특히, 폴리아크릴로나이트릴(polyacrylonitrile, PAN)은 금속 이온을 흡착할 수 있는 작용기가 많아 관심을 끌고 있다. PAN은 쉽게 전기방사를 통해 고분자 나노 섬유화될 수 있으며 높은 표면적을 가질 수 있다. 본 총설에서 다룰 복합 PAN 섬유는 폐수 처리를 위한 또 다른 유형의 고분자이다.
Cellulose acetate-graft-(glycidylmethacrylate-g-polyethylene glycol) (CA-g- (GMA-g-PEG) was synthesized and incorporated into acetylated methyl cellulose (AMC) to prepare high rejection performance ultrafiltration membranes. H1-NMR and X-ray photoelectron spectroscopy study confirmed the successful synthesis of CA-g-(GMA-g-PEG) and utilized for hydrophilic modification agent. Polyethyleneimine(PEI), HumicAcid(HA) and Citric Acid(CA) ligands was used to bind the metal ions in aqueous solution.The rejection efficiency of AMC/CA-g-(GMA-g-PEG) blend membranes was studied in terms of pH, concentration and time. The successful developments would allow the safe and economical advancement in the fabrication of AMC blend membranes for ultrafiltration applications.
중금속 이온이(Cd2+, Hg2+, Cu2+, Pb2+) 산개구리 여포난자의 성숙에 미치는 영향을 알아보기 위해 배양액에 일정 농도의 이온들을 첨가한 후 여포난자들을 일정시간 배양하였다. 여포난자의 성숙을 유도하기 위하여 FPH(Frog pituitary homogenate: 0.1p.e./ml)를 사용하였으며 여포난자의 성숙율은 난자의 핵막 붕괴율로부터 구하였다. 실험결과 Cd2+은 0.1ppm의 농도부터 여포난자의 성숙을 억제하였으며 Hg2+과 Cu2+는 1ppm부터, Pb2+는 5ppm에서 현저히 억제효과를 나타내기 시작하였다. 이들 중금속 이온 작용의 가역성을 조사하기 위해 3시간 동안 여포난자들을 중금속 이온에 노출시킨 후 보통 배양액으로 옮겨 계속 배양을 해 본 결과 Cd2+은 1ppm에서 가역성을 나타내었으나 2.5ppm에서는 비가역적인 손상을 주었다. Hg2+, Cu2+, Pb2+의 효과는 2.5ppm에서는 비가역성을 나타냈다. 위 결과로부터 개구리 여포난자의 배양계는 환경오염물질의 독성 검정에 요긴하게 사용할 수 있을것으로 생각되었다.
We have synthesized the water-insoluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of chitosan with carbon disulfide in the presence of alkali metal hydroxide, Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. To elucidate this natural polymer the capacity of adsorbing heavy metal ions, we have performed adsorption experiments using chitosan derivatives of various average molecular weights with different contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from chitosan of average molecular weight ranging 5,700~20,000 was shown to have the highest capacity of adsorbing heavy metal ions. Adsorbing efficiency was increased as the reaction time was increased and as the reaction temperature range of 25~45℃. The adsorption capacity at various pH, however, appeared to vary depending on the heavy metal ions studied.
Chitosan itself has been prepared using chitin, one of the most abundant compounds in nature, as a starting material. We have synthesized the water-soluble chitosan derivative, N-dithiocarboxy chitosan sodium salt, through the reaction of water-soluble chitosan with carbon disulfide in the presence of alkali metal hydroxide. To elucidate this natural polymer capacity of adsorbing heavy metal ions, we have performed adsorption experiments using the water-soluble chitosan derivative various average molecular weight and of different percent contents of sulfur. The effect of pH, adsorption time and temperature on adsorption efficiency was also studied. The adsorbent derived from water-soluble chitosan of average molecular weight ranging 9,000~120,000 was shown to have the highest capacity of adsorbing heavy metal ions. On the whole, adsorbing efficiency was increased as the reaction time goes longer and also increased as the reaction temperture goes higer in temperture range of 15℃~45℃. The adsorption capacity at various pH, however, was appeared to vary depending on the heavy metal ions studied Judging from these finding, water-soluble N-dithiocarboxy chitosan sodium salt, a derivative of a biodegradable nature polymer, is believed to be a potential adsorbent for heavy metal ions since it not only is shown to lower the concentration of heavy metal ions to below the drainage quality standard, but also it would not cause acidification and hardening of soil which is one of the detrimental effects of synthetic macromolecular adsorbents present.
국내 경상북도 포항 지역에서 채취한 6종의 천연 제올라이트를 X-선 회절, X-선 형광분석, 열 시차 분석, 열중량 분석 및 양이온교환능 분석을 통해 특성분석을 수행하였다. 이들 제올라이트의 주 성분은 구룡포A (Ku-A), 구룡포B (Ku-B), 구룡포C (Ku-C), 동해A (Dh-A), 동해B (Dh-B), 동해C (Dh-C) 모두 모데나이트, 알바이트 및 석영이 함유되어 있었다. 6종의 제올라이트는 Si, Al, Na, K, Mg, Ca, Fe을 함유하고 있었으며 구룡포C (Ku-C) 제올라이트의 양이온 교환능이 다른 지역의 제올라 이트 보다 높게 나타났다. 6종의 천연 제올라이트를 이용하여 Pb2+, Cd2+ 및 Cu2+ 등의 중금속 이온을 제거하는데 소요되는 반응 시간의 효과를 비교하였다. 6종의 천연 제올라이트 모두 Pb2+, Cd2+ 및 Cu2+ 제거율이 매우 낮게 나타났다. 이는 6종의 천연 제올라이트에 함유된 제올라이트의 함량이 매우 낮기 때문으로 판단된다. 본 연구 결과는 제올라이트 광석의 중금속 흡착능력은 제올라이트의 함량, 즉 광석의 품위에 크게 의존되는 경향을 보여주고 있다.
The removal performances of divalent heavy metal ions (Pb2+, Cu2+, Cd2+, Sr2+ and Mn2+) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of Pb2+>Cu2+>Cd2+>Sr2+>Mn2+ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for Mn2+ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90% of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.
본 연구에서는 석탄 광산배수에 함유된 중금속을 부유선별로 제거하기에 앞서 부유선별 조건에 영향을 미치는 철, 망간, 알루미늄 이온의 침전특성을 알아보았다. Fe(III), Mn(II), Al(III) 이온을 NaOH와 반응시켜 1 h 동안 침전시키면 Fe(III)은 pH 5.0 이상에서, Mn(II)은 pH 10.0 이상에서 그리고 Al(III)은 pH 6.0~9.0의 범위에서 대부분 침전되어 여액에 1.0mgL-1 이하로 잔류되었다. Fe(III), Mn(II), Al(III)의 혼합 용액에 포수제인 올레인산나트륨을 첨가하였을 경우, 각각의 중금속 이온은 올레인산나트륨과 반응하여 불용성 염을 거의 형성하지 않았기 때문에 침전 부선법으로 광산배수에 함유된 중금속을 제거해야 하는 것으로 나타났다.
In order to examine the inhibition effect of other heavy metal ions on the removal of heavy metal ions by crab shell in aqueous solution, 10 heavy metal ions (Cr3+, Cd2+, Ni2+, Zn2+, Hg2+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+) were used as single heavy metal ions and mixed heavy metal ions, respectively. In single heavy metal ions, Pb2+, Cr3+, Cu2+ were well removed by crab shell, however, Cd2+, Ni2+, Zn2+, Mn2+ were not. The heavy metal removal increased as the increase of covalent index (Xm2r), and the relationship classified heavy metal ions as 2 heavy metal groups (Fe3+, Fe2+, Cu2+, Cr3+, Mn2+, Ni2+, Zn2+ group and Pb2+, Hg2+, Cd2+ group). In mixed heavy heavy metal ions, the removals of Fe2+, Fe3+, Pb2+, Cu2+ as 0.49 mmol/g, regardless of the existence of other heavy metal ions, were similar to the result of single heavy metal ions experiment. The removals of Mn2+, Cd2+, Ni2+ decreased as the existence of other heavy metal ions, however, the removal of Zn2+, Cr3+, Hg2+ increased.
The biosorption abilities of different parts of waste brown seaweeds and their derivatives to remove heavy metals(Cd, Zn, Pb, Cu, Fe, Ni, Mn) from waste water were evaluated. The two parts of waste brown seaweeds (Undaria pinnatifida) were stems and sporophyls, and the brown seaweed derivatives were alginic fibers, active carbon added alginate(AC-alginate) and dealginate. The abilities of the sporophyls to adsorb the heavy metal ions were higher than those of stems, and those of alginates were slightly higher than those of dealginate in single ion solution. With decreasing the size of biosorbents, the velocity and the amount of adsorption increased. The abilities of alginate to remove the heavy metal ions increased in multi-ion solutions by adding active carbon to alginate. The selectivity of these biosorbents(alginate, AC-alginate) to lead ion was highest and to manganese ion was lowest.
Removal of Cu(Ⅱ), Cr(Ⅱ) and Pb(Ⅲ) ions from aqueous solutions using the adsorption process on the loesses has been investigated. Variations of contact time, pH, adsorption isotherms and selectivity of coexisting ions were experimental parameters. pH of KJ and YIK samples diluted to 1% solution, was rearly the same with each value of pH 5.58 and 5.49, and both samples showed weak acidic properties. From chemical analysis, both samples contain remarkably different amounts of SiO2, Al2O3 and Fe2O3. From XRD measurement, quartz was mainly observed in both samples. Kaolinite was also observed, also in both samples, but Feldspar was only observed in KJ sample. Adsorption of metal ions on the loesses were reached at equilibrium by shaking for about 30min. The adsorption of Cr(Ⅲ) ion was higher than that of Cu(Ⅱ) and Pb(Ⅱ) ions. The order of amount adsorbed among the investigated ions was Cr(Ⅲ)>Pb(Ⅱ)>Cu(Ⅱ). In acidic solution, the adsorptivity of loesses was increased as pH increased. The adsorption of Cr(Ⅲ) ion on the loesses were fitted to the Freundlich isotherms. Freundlich constants(l/n) of KJ and YIK loesses were 0.54 and 0.55, respectively.
This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions.
The order in heavy metal ions adsorbed on scoria was; Pb^+>Cd^2+>Cu^2+>Ag^+>Co^2+>Zn^2+>Cr^3+>Cr^6+. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared.
Adsorption isotherm of scoria was generally obeyed to Freundlich formula than Langmuir formula and Freundlich constant, 1/n was obtained in the range of 0.2∼0.4.
New two macrocyclic compounds using as carriers of liquid emulsion menbrame, have been synthesized. These reuslts provide evidance for the usefulness of the theory in designing the systems. The efficiency of selective transport for heavy metal ions have been discussed from the membrane systems that make use of SCN^- I^- , CN^- and Cl^- ion as co-anions in source phase and make use of S_2O_3^2- and P_2O_7^4- ion as receiving phase, respectively. The transport, rate of M(Ⅱ) was highest when a maximum amount of the M(Ⅱ) in the source phase was present as Cd(SCN)_2([SCN^-]=0.40M, Hg(SCN)_2([SCN^-]=0.40M) and Pb(CN)_2([CN^-]=0.40M). The Cd(Ⅱ) and Pb(Ⅱ) over each competitive cations were well transprted with 0.3M-S_2O_3^2- and 0.3M-P20_7^4 , respectively in the receiving phase. Results of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsion system. First one must effective extraction of the M^n+ into the toluene systems. The effectiveness of this extraction is the greatest if logK for M^n+-macrocycle interaction is large and if the macrocycle is very insoluble in the aqueous phase. Second, the ratio of the logK values for M^n+-receiving phase (S_2O_3^2- or P_2O_7^4-) to M^n+-macrocycle (L_1 or L_2) interaction must be large enough to ensure quantitative stripping of M^n+(Cd^2+, Hg^2+ or Pb^2+) at the toluene receiving phase interface. L_1(3.5-benzo-10,13,18,21-tetraoxa-1,7,diazabicyclo(8,5,5) eicosan) forms a stable Cd^2+ and Pb^2+ complexes and L_1 is very insoluble in water and its Cd2^+ and Pb^2+ complex is considerably less stable than Cd^2+-(S_2O_3)_2^2- and Pb^2+-P_2O_7^4- complexe is On the other hand, the stability of the Hg^2+-L_1 complex exceed that of the Hg^2+-(S_2O_3)_2^2- and Hg^2+-P_2O_7^4- , and the distribution coefficient of L_2(5,8,15,18,23,26-hexaoxa-1,12- diazabicyclo-(10,8,8) octacosane) is much smaller than that of L_1. Therefore, the partitioning of L_2 is favored by the aqueous receiving phase, and little heavy metal ions transport is seen despite the large logK for Hg^2+-L_1 and M^n+(Cd^2+, Pb^2+ and Hg^2+)-L_2 interactions.