검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 197

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 교량받침 교체용 통공앵커의 충전조건과 하중조건에 따른 구조적 안전성을 유한요소해석을 통해 확인하였다. 에폭시의 충전여부와 하중조건을 변수로 두어 통공앵커의 구조적 거동을 확인한 결과 에폭시 완충 시 앵커에 정적수평하중이 균등하게 작용하여 통공앵커가 작용하중에 저항하여 구조물의 국부적인 파괴를 방지 가능하였다.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.
        4,500원
        9.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, a new piston pinhole boring machine for simultaneous 3-axis machining using linear motor and tilting unit is developed. We propose a new method that combines the linear motor and tilting unit to overcome the limitations of existing techniques. By using the linear motor, we suggest oval machining of piston pin holes. The horizontal reciprocating motion of the linear motor allows for oval machining, creating horizontal or vertical ovals on the pin holes based on the spindle tool's rotation angle. For profile machining of piston pin holes, we propose the use of a tilting unit that converts servo motor motion into linear motion. The vertical motion of the tilting unit enables profile machining, allowing the spindle tool connected to it to translate vertically during spindle rotation and shape the pin holes. To ensure simultaneous oval and profile machining, we suggest channel synchronization, separating the oval and profile machining channels. Synchronizing these channels enables both oval and profile machining to be performed simultaneously on the pin holes. In summary, this research aims to develop a piston pinhole boring machine that effectively utilizes the linear motor and tilting unit for accurate and productive pin hole machining, achieving simultaneous 3-axis machining.
        4,000원
        11.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite is a widely used buffer material in high-level radioactive waste repositories due to its favorable properties, including its ability to swell and low permeability. Bentonite buffers play an important role in safe disposal by providing a low permeability barrier and preventing radionuclides migration into the surrounding rock. However, the long-term performance of the bentonite buffer is still an area of research, and one of the main concerns is the erosion of the buffer due to swelling and groundwater flow. Erosion of the bentonite buffer can have a significant impact on repository safety by reducing the integrity of the buffer and forming colloids that can transport radionuclides through groundwater, potentially increasing the risk of radionuclide migration. Therefore, understanding the mechanisms and factors that influence the erosion of the bentonite buffer is critical to the safety assessment of high-level radioactive waste repositories. In this study, we attempted to develop the bentonite buffer erosion model using Adaptive Processbased total system performance assessment framework for a geological disposal system (APro) proposed by the Korea Atomic Energy Research Institute (KAERI). First, the erosion phenomenon was divided into two stages: bentonite buffer penetration into rock fractures and colloid formation. As an initial step in the development of the buffer erosion model, a bentonite buffer intrusion into the fracture and consequent degradation of buffer property were considered. For this purpose, a tworegion model based on the dynamic bentonite diffusion model was adopted which is one of the methods for simulating bentonite buffer intrusion. And, it was assumed that the buffer properties, such as density, porosity and permeability, thermal conductivity, modulus of elasticity, and mechanical strength, are degraded as the buffer erodes. The bentonite buffer degradation model developed in this study will serve as a foundation for the comprehensive buffer erosion model, in conjunction with the colloidal formation model in the future.
        14.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대부분의 모바일 AR 컨텐츠들은 모바일 디바이스의 기술적 한계로 인해 평면 탐지 후, 그 위에서만 구현되는 제한된 구조를 가지고 있다. 이러한 문제는 제한된 공간이 표현의 범위를 제한하기 때문에 모바일 AR의 확산 에 크게 저해가 될 수 있다. 한편 Unity의 AR Foundation이 제공하는 ‘Meshing’은 실제 오브젝트의 크기와 위 치에 알맞게 메시를 생성해주는데, 이를 활용한다면 모바일 AR 컨텐츠들은 평면에서 벗어나 더 넓은 현실 공 간에 구현될 수 있다. 하지만 ‘Meshing’은 모바일 기기의 센서가 닿지 못하는 부분에는 메시를 생성하지 않기 때문에 별도의 작업 없이 그대로 사용한다면 게임 오브젝트가 빠져나갈 수 있는 구멍이 생길 수 있다. 이 구 멍은 컨텐츠 구현에 있어서 치명적이기에 Hole-Filling 알고리즘을 사용하여 구멍을 메우고자 하는 연구가 있 었다. 하지만 기존 연구에서 사용하는 Hole-Finding 알고리즘은 특정 상황에서 외곽선과 구멍을 제대로 구별해 내지 못하는 문제가 있다. 이 문제는 일부 구멍은 메우지 못하고 외관선끼리 이어버려 컨텐츠에 치명적인 문 제를 야기한다. 본 논문에서는 Meshing이 제공하는 노말 벡터와 경계선들로 계산한 노말 벡터 간의 차이를 이 용해 구멍과 외곽선을 구분하는 방법을 제안한다. 이 방법을 적용한 결과, 이전 연구의 방법보다 좀 더 빠르 면서 구멍과 외곽선을 제대로 구별하는 모습을 확인하였다.
        4,000원
        17.
        2022.05 구독 인증기관·개인회원 무료
        Tributyl phosphate (TBP) is a well-known and important compound in the nuclear industry for the nuclear fuel reprocessing, and it is also used in a various field such as plastic industry as antifoaming agent. Untreated organic pollutants in TBP can remain in the soil water and cause serious environmental pollution, thus it should be degraded through environmentally friendly methods. The non-thermal plasma-based advanced oxidation process (AOP) is one of the most widely studied and best developed processes owing to its simple structure and ease of operation. In this study, a plasma-based AOP was stably generated using submerged multi-hole dielectric barrier discharge (DBD) and applied to relatively high concentration of TBP solution. A submerged DBD plasma system was designed to directly interact with water, thereby producing reactive oxygen species (ROS) and functioning as a powerful oxidizer. Additionally, UV, O3, and H2O2 are generated by the developed plasma system without using any other additives to produce OH radicals for degrading organic pollutants; therefore, this system circumvents the use of complex and advanced oxidation processes. The electrical properties and concentrations of the active species were analyzed to establish optimal plasma operating conditions for degrading TBP solution. The results were analyzed by measuring the total organic carbon (TOC) and changes in solution properties. Based on these results, a degradation mechanism of TBP solution is proposed. After 50 min of plasma treatment, the concentration of TOC was gradually decreased. Consequently, we found that plasma-based AOP using submerged multi-hole DBD has advantages as an alternative technology for degrading organic pollutants such as TBP solution.
        18.
        2022.05 구독 인증기관·개인회원 무료
        To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
        19.
        2022.05 구독 인증기관·개인회원 무료
        Through constructing statistical fracture network model based on discrete element method, the evolution characteristics of the fracture aperture had been directly simulated and evaluated caused by redistributed stress after the borehole excavation. This study focuses on the size effect of the discrete element method for the analysis of the effective distance of fracture aperture change after the borehole excavation. A two-dimensional trace-type domain with a maximum size of 1.1 m2 was created using a discrete fracture network with stochastic information of KURT. A total of eight domains with different sizes were constructed from the largest domain area to the 0.4 m2 analysis area. The aperture change ratio which can be depending on the domain size was examined. The ratio was investigated by comparing the aperture size before and after the simulation of borehole excavation. In addition, the effective range of aperture changes was analyzed by comparing the re-distribution distance from the center of the borehole. Based on dimensional analysis, input variables (borehole radius, occurrence distance of aperture changes, domain size) were modeled using exponential distribution form. Through the analysis model, two dimensionless variables were derived to investigate the expected distance of the aperture changes and appropriate DFN domain size for simulating bole excavation. As an application example of the 3-inch borehole simulation, the analysis model predicted that the range of aperture changes could occur within a radius of about 0.98 m from the borehole center, and the suitable size of the model had been inferred as about 5 × 5 m for minimizing the domain size effect.
        1 2 3 4 5