Hot forging is widely used to manufacture many industrial parts such as machine, automotive and so on. It is important to simulate the relations or characteristics between preform and die before designing the die. The purpose of this study is to investigate the forging characteristics of parking gear with nonlinear gear groove, thus the behaviors of preform can be predicted in advance and finally they can be applied to die design. As the results, since the distributions of high effective strain rate of parking gear were less than 3%, it was predicted that the manufacturing of parking gear with nonlinear gear groove might be possible. Furthermore it was observed that, in this study, the effective stress of bottom die was lower than that of top die.
This study elucidates the effect of wear resistance in Forging S45C. Three wear factor which are wear loss, coefficient of friction and friction force could conduct an experiment of wear-resistance test. First of all, wear test of ball-on-disk has been performed using steel balls to determine the variation of wear characteristics. Finally, the coefficient of wear was calculated by the Archard wear equation in hot forging S45C.
Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at 1,200˚C, the ideal mechanical properties (tensile strength ≥ 1,000 MPa, Charpy impact value ≥ 100 J/cm2) can be achieved by using optimized conditions (quenching temperature : 925 to 1,050˚C, cooling rate : ≥ 5˚C/sec). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over 5˚C/sec. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of 5˚C/sec.
The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.
A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.
고온 압축 시험을 이용하여 열간 단조용 비조질강의 고온 변형 거동을 온도, 변형률속도, 합금원소에 따라 조사하였다. 고온 압축 시험에서 얻은 유동 응력 곡선의 형태와 조직관찰로부터 고온 변형 기구는 동적 재결정임을 알 수 있었다. 최대응력에 이르는 변형률은 온도가 증가할수록 작아지고 변형률속도가 빠를수록 크게 나타났다. Nb-V-Mo강은 Nb-V강에 비하여 최대응력은 증가하였으나 동적 재결정은 빨라졌다. 1.2Mn-0.09Nb강은 1.0Mn-0.05Nb강에 비하여 최대응력은 증가하였으나 동적재결정은 지연되었다. C-Nb-V강은 C강에 비하여 최대응력이 증가하였으며 동적 재결정은 지연되었다. 열간변형에 대한 구성방정식은 멱수법칙의 형태를 가졌다. Zener-Hollomon 파라미터가 증가할수록 동적 재결정립은 미세해졌고, 동적 재결정립과 Zener-Hollomon 파라미터와의 관계는 멱수법칙으로 정량화할 수 있었다.
0.4wt% C을 함유하는 기존의 기계구조용 탄소강에 V과 Nb을 단독 또는 복합으로 첨가한 열간단조용 비조질강의 기계적 성질을 조사하고, 미세조직과 셔출물의 분포 및 형상을 관찰하였으며 첨가원소의 영향을 정량화 하기 위해 중회귀분석을 행하였다. 인장시험 결과 모든 재료의 인장강도는 70kg/mm2 이상으로 기존의 소입.소려재(S45C)와 동등하거나 그 이상이었으며, 충격시험 결과 대부분 재료의 충격에너지는 40J 이하로 기존 재료의 약 50%정도였 다. V함량이 0.10에서 0.l5wt%로 증가하였을 경우 인장강도는 약 20% 증가하였으나 충격에너지는 감소하였다. 이는 VC의 미세석출에 의해 석출강화 효과와 함께 펄라이트의 부피분율이 증가하고 층간거리가 감소했기 때문이다. 반면 Nb 함량이 0.05에서 0.10wt%로 증가한 경우에는 강도와 인성의 근소한 증가경향을 나타내었다. 이는 NbC의 석출애 의한 결정립 미세화 효과가 VC 보다 우세했기 때문이다. 또한 V+Nb의 복합첨가는 단독첨가시에 비하여 충격인성의 향상에 보다 효과적이었으며, 본 실험에서 최적 강도와 인성의 조합을 보인 합금조성은 0.4C-1.19Mn-0.05S-0.12V-0.07Nb로 인장강도는 84kg/mm2 이상, 충격인성은 34J 이상이었다.