검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        1.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The trans-differentiation potential of mesenchymal stem cells (MSCs) is employed, but there is little understanding of the cell source-dependent trans-differentiation potential of MSCs into corneal epithelial cells. In the present study, we induced trans-differentiation of MSCs derived from umbilical cord matrix (UCM-MSCs) and from dental tissue (D-MSCs), and we comparatively evaluated the in vitro trans-differentiation properties of both MSCs into corneal epithelial-like cells. Specific cell surface markers of MSC (CD44, CD73, CD90, and CD105) were detected in both UCM-MSCs and D-MSCs, but MHCII and CD119 were significantly lower (P < 0.05) in UCM-MSCs than in D-MSCs. In UCM-MSCs, not only expression levels of Oct3/4 and Nanog but also proliferation ability were significantly higher (P < 0.05) than in D-MSCs. In vitro differentiation abilities into adipocytes and osteocytes were confirmed for both MSCs. UCM-MSCs and D-MSCs were successfully trans-differentiated into corneal epithelial cells, and expression of lineage-specific markers (Cytokeratin-3, -8, and -12) were confirmed in both MSCs using immunofluorescence staining and qRT-PCR analysis. In particular, the differentiation capacity of UCM-MSCs into corneal epithelial cells was significantly higher (P < 0.05) than that of D-MSCs. In conclusion, UCM-MSCs have higher differentiation potential into corneal epithelial-like cells and have lower expression of CD119 and MHC class II than D-MSCs, which makes them a better source for the treatment of corneal opacity.
        4,500원
        2.
        2017.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Adhesive capsulitis of the shoulder is a common cause of pain that occurs during shoulder movement, thereby restricting shoulder rotation in clinical practice. Although most patients respond to pain relief treatment (NSAID or corticosteroids) by improving their range of motion, it remains poorly understood without any definitive treatment algorithm. In addition to immune cells, synoviocytes, chondrocytes and osteoblasts in the joint are known to produce pro-inflammatory mediators such as reactive oxygen species (ROS), inflammatory cytokines and lipid mediators, presumably contributing to the pathogenesis of osteoarthritis (OA) and adhesive capsulitis. Although inflammation and also fibrosis are proposed to be the basic pathological changes of a frozen shoulder, there is a lack of information regarding the downstream targets of the pro-inflammatory ROS signaling pathway in the synoviocytes and also how these ROS targets are modulated at the transcription level by a corticosteroid - dexamethasone. In this study, we used human fibroblast like synoviocytes (HFLS) to characterize the signaling targets of ROS by employing a human DNA microarray tool and studied the role of dexamethasone in this process. Our data suggest that several genes such as FOS, FOSB and NFkBIZ, which are known to be involved in pro- or anti- inflammation response, are modulated at the transcription level by ROS and dexamethasone.
        4,000원
        4.
        2016.03 구독 인증기관 무료, 개인회원 유료
        Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-Lefèvre syndrome, and Chédiak-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of Pam3CSK4, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. Pam3CSK4 significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. Pam3CSK4 alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and Pam3CSK4 decreased the amounts of ROS, as compared to Pam3CSK4 alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of Pam3CSK4. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis , an early colonizer, in subgingival biofilm.
        4,000원
        5.
        2012.09 구독 인증기관 무료, 개인회원 유료
        The GroEL heat-shock protein from Fusobacterium nucleatum, a periodontopathogen, activates risk factors for atherosclerosis in human microvascular endothelial cells (HMEC-1) and ApoE-/- mice. In this study, we analyzed the signaling pathways by which F. nucleatum GroEL induces the proinflammatory factors in HMEC-1 cells known to be risk factors associated with the development of atherosclerosis and identified the cellular receptor used by GroEL. The MAPK and NF-κB signaling pathways were found to be activated by GroEL to induce the expression of interleukin- 8 (IL-8), monocyte chemoattractant protein 1 (MCP- 1), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin, and tissue factor (TF). These effects were inhibited by a TLR4 knockdown. Our results thus indicate that TLR4 is a key receptor that mediates the interaction of F. nucleatum GroEL with HMEC-1 cells and subsequently induces an inflammatory response via the MAPK and NF-κB pathways.
        4,000원
        6.
        2009.12 구독 인증기관 무료, 개인회원 유료
        Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst‐stage embryos spontaneously have ability to differentiate via embryo‐like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte‐like cells differentiation from hESCs by treatment of induced‐factors, 5‐azacytidine, BMP‐4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte‐like cells showed that cardiac markers are expressed for further analysis by RT‐PCR and immunocytochemistry. Interestingly, BMP‐4 greatly improved mogeneous population of the cardiomyocyte‐like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.
        4,000원
        8.
        2008.12 구독 인증기관 무료, 개인회원 유료
        The HMG box containing protein (HBP) has a high mobility group domain and involved in the regulation of proliferation and differentiation of tissues. We screened HBP2 in glioblastoma using Suppression Subtractive Hybridization (SSH) and isolated human spermatogonial stem cell‐like cells (hSSC‐like cells) derived from patients of nonobstructive azoospermia (NOA). Expression of HBP2 was analyzed by RT‐PCR in undifferentiated stem cells (human Embryonic Stem Cells, hSSC‐like cells 2P) and spontaneous differentiated stem cells (hSSC‐like cells 4P). It was overexpressed in hESC and hSSC‐like cells 2P but not in hSSC‐like cells 4P. Also, the expression level of HBP2 was downregulated in colon tumor tissues compared to normal tissues. Specifically in synchronized WI‐38 cells, HBP2 was highly upregulated until the G1 phase of the cell cycle and gradually decreased during the S phase. Our results suggest that HBP2 was downregulated during the spontaneous differentiation of hSSC‐like cells. HBP2 was differently expressed in colon tissues and was related to G1‐progression in WI‐38 cells. It may play a role in the maintenance of an undifferentiated hSSC‐like cell state and transits from G1 to S in WI‐38 cells. This research was important that it identified a biomarker for an undifferentiated state of hSSC‐like cells and characterized its involvement to arrest during cell cycle in colon cancer.
        4,000원
        15.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to develop a motion generation technique based on a double inverted pendulum model (DIPM) that learns and reproduces humanoid robot (or virtual human) motions while keeping its balance in a pattern similar to a human. DIPM consists of a cart and two inverted pendulums, connected in a serial. Although the structure resembles human upper- and lower-body, the balancing motion in DIPM is different from the motion that human does. To do this, we use the motion capture data to obtain the reference motion to keep the balance in the existence of external force. By an optimization technique minimizing the difference between the motion of DIPM and the reference motion, control parameters of the proposed method were learned in advance. The learned control parameters are re-used for the control signal of DIPM as input of linear quadratic regulator that generates a similar motion pattern as the reference. In order to verify this, we use virtual human experiments were conducted to generate the motion that naturally balanced.
        16.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        The trophectoderm is one of the earliest cell types to differentiate in the forming placenta. It is an important for the initial implantation and placentation during pregnancy. Trophoblast stem cells (TBSCs) develop from the blastocyst and are maintained by signals emanating from the inner cell mass. However, several limitations including rarity and difficulty in isolation of trophoblast stem cells derived from blastocyst still exist. To establish a model for trophoblast differentiation, we isolated TBSCs from human term placenta (38 weeks) and characterized. Cell cycle was analyzed by measuring DNA content by FACS analysis and phenotype of TBSCs was characterized by RT-PCR and FACS analysis. TBSCs have expressed various markers such as self-renewal markers (Nanog, Sox2), three germ layer markers (hNF68, alpha-cardiac actin, hAFP), trophoblast specific markers (CDX-2, CK7, HLA-G), and TERT gene. In FACS analysis, TBSCs isolated from term placenta showed that the majority of cells expressed CD13, CD44, CD90, CD95, CD105, HLA-ABC, cytokeratin 7, and HLA-G. Testing for CD31, CD34, CD45, CD71, vimentin and HLA-DR were negative. TBSCs were shown to decrease the growth rate when cultured in conditioned medium without FGF4/heparin as well as the morphology was changed to a characteristic giant cell with a large cytoplasm and nucleus. In invasion assay, TBSCs isolated from term placenta showed invasion activities in in vivo using nude mice and in vitro Matrigel system. Taken together, these results support that an isolation potential of TBSCs from term placenta as well as a good source for understanding of the infertility mechanism.
        17.
        2010.09 서비스 종료(열람 제한)
        Previously we have succeeded to isolate stem cells (HEAC) from human eyelid adipose tissue, and functionally differentiate them into insulin-secreting cells. In the present study, we examined whether insulin family members might affect the insulinogenic differentiation of HEAC. Insulin treatment during culture affected little on the insulin and c-peptide secretions from HEAC after culture. However, insulin-like growth factor (IGF) 1 treatment decreased both secretions, whereas IGF2 greatly increased the secretions in a glucose-dependent manner. HEAC treated with IGF2 showed stronger expression of Pdx1, Isl1, Pax6 and PC1/3 genes compared to the control. They also showed distinct staining with insulin and c-peptide antibodies, and dithizone. While insulin or IGF2 treatment increased total cell number by 1.3- or 1.5-fold, respectively, each treatment increased the amount of insulin secretion by 27.1- or 78.1-fold, respectively. IGF2-enhanced insulinogenic differentiation was completely blocked by an antibody against insulin receptor (IR), but not by an antibody against IGF1 receptor (IGF1R). Differentiated HEAC showed expression of both IR and IGF1R genes while they expressed neither IGF2 nor IGF2R genes. Based upon these results, it is suggested that whereas IGF1 might inhibit the insulinogenic differentiation of HEAC, insulin and IGF2 could enhance the differentiation, and that the enhancing effect could be mediated via IR.
        18.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        As robots are no longer just working labors in the industrial fields, but stepping into the human's daily lives, interaction and communication between human and robot is becoming essential. For this social interaction with humans, emotion generation of a robot has become necessary, which is a result of very complicated process. Concept of mood has been considered in psychology society as a factor that effects on emotion generation, which is similar to emotion but not the same. In this paper, mood factors for robot considering not only the conditions of the robot itself but also the circumstances of the robot are listed, chosen and finally considered as elements defining a 2-dimensional mood space. Moreover, architecture that combines the proposed mood model and a emotion generation module is given at the end.
        19.
        2009.09 KCI 등재 서비스 종료(열람 제한)
        One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for -tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, -tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.
        20.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        People have expected a humanoid robot to move as naturally as a human being does. The natural movements of humanoid robot may provide people with safer physical services and communicate with persons through motions more correctly. This work presented a methodology to generate the natural motions for a humanoid robot, which are converted from human motion capture data. The methodology produces not only kinematically mapped motions but dynamically mapped ones. The kinematical mapping reflects the human-likeness in the converted motions, while the dynamical mapping could ensure the movement stability of whole body motions of a humanoid robot. The methodology consists of three processes: (a) Human modeling, (b) Kinematic mapping and (c) Dynamic mapping. The human modeling based on optimization gives the ZMP (Zero Moment Point) and COM (Center of Mass) time trajectories of an actor. Those trajectories are modified for a humanoid robot through the kinematic mapping. In addition to modifying the ZMP and COM trajectories, the lower body (pelvis and legs) motion of the actor is then scaled kinematically and converted to the motion available to the humanoid robot considering dynamical aspects. The KIST humanoid robot, Mahru, imitated a dancing motion to evaluate the methodology, showing the good agreement in the motion.
        1 2