The limitations and problems of the rechargeable battery and short mileage per one electric charging have not been overcome at the electric vehicles. To solve these problems, the hybrid vehicle has been developed by securing the performance of automotive with the conventional internal combustion engine and the environmental benefit. Meanwhile, the electric UTV (utility terrain vehicle) which has this environmental benefit has been widely used for factories, parks, leisure and agricultural areas. In this study, the electric UTV was fabricated and attached the auxiliary power drive systems including the photovoltaic power generation system into this electric vehicle in order to make up the hybrid (motor + photovoltaic) vehicle system. As the range of the hybrid UTV would be extended over 20% than that of the existing golf cart per one electric charging through this successful development, the dynamic stiffness was improved through light-weight body design.
Because of environmental pollution and lack of resources, necessity of energy efficiency improvement and reduction of exhaust gas emission and CO2 have grown in importance. Therefore a lot of studies are conducted for HEV(hybrid electric vehicle) and PHEV(plug-in hybrid electric vehicle). In addition, automobile companies are researching and manufacturing HEV and PHEV. Due to cost and time problem, simulation is preferred than experimental test to find better component size for efficiency improvement. In this research, backward simulation program is developed base on Dynamic Programming. Using this simulation program, fuel economy sensitivities for each parameter are analyzed and compared. Fuel economy is measured for a combined cycle that is calculated from FTP-75 and HWFET cycle. The target parameters are front/rear power train efficiency, drag coefficient, vehicle mass, rolling resistance coefficient, tire radius, center of gravity. The most sensitive parameter is front power train efficiency and second is drag coefficient. Rear power train efficiency, vehicle mass, rolling resistance coefficient are third, forth and fifth. By comparing sensitivities, we can choose a better way to improve fuel economy of HEV.
The major complaint of hybrid vehicle driver is that real fuel economy is lower than the certified fuel economy. Therefore, it is important to analyze the cause of low fuel economy and to improve the fuel consumption at real driving condition. In this study, the various speed profile is measured by driving urban road with considering different traffic jam. By using backward simulation, the fuel economy characteristics of the acquired driving modes are analyzed. From the simulation results, the operating points of engine and motor analyzed and the cause of decrease of real fuel economy is examined.
Hybrid car can improve fuel efficiency using a power of motor that is generated during constant-speed or deceleration driving. The motor is located between engine and transmission. But, when voltage of main battery is low, fuel efficiency is low because the voltage can't run the motor. In this situation, this study observed fuel efficiency when using solar cell for assistance power. In order to verify a fuel consumption of hybrid car equipped solar cell for assistance power, the car was tested downtown driving. As hybrid car was equipped solar cell for assistance, fuel consumption was reduced 8.35 % at running air conditioner. And, at air conditioner doesn't work, fuel consumption was reduced 6.88 %. This point of view, CO2 is expected to reduce in similar proportion.
A study of fuelcell hybrid electronic vehicle for improve fuel consumption is used one wheel dynamic vehicle model and make a profound study of control strategy for cuts fuel consumption. For this reason there is a limit to study of real vehicle fuel consumption increase with weight transfer. This study perform a precision multi-body fuelcell hybrid electronic vehicle modeling using functional suspension model have fast analysis time. Verify a improve fuel consumption in urban driving cycle compare with one wheel dynamic model and demonstrate a power loss decrease by weight transfer is causes of fuel consumption rise.
This paper is research of design and manufacture of a hybrid vehicle. Through seminar about vehicle design principle, an undergraduate students studied concept about vehicle design. Vehicle frame designed by CATIA V5. Also, composed finite element model of designed frame and executes static and dynamic analysis. A DMU model for a full vehicle was built using CATIA V5 and used to check interference between parts and to simulate assembly process. Also, in this study, applied split parallel type's hybrid system on manufacturing vehicles. Controller for system drive designed using Atmel company's AVR MCU. Through this project, the undergraduate students could acquire knowledge about vehicle development process.
Vehicle routing problem with time windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic vehicle routing problem. Vechicle rout
Vehicle routing problem with Time Windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic Vehicle routing problem. Vechicle routing problem with Time Windows is known to be NP-Hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a Tabu Search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems.
In recent years, with the increase of people’s automobile travel, the traffic has become more and more congested, and the generated automobile exhaust aggravates the environmental pollution. In order to realize the development of the concept of low carbon and environmental protection, China’s new energy vehicles have developed rapidly, and plug-in hybrid vehicles have played a crucial role in the transformation of the automobile industry. China’s plug-in hybrid vehicle industry has developed so far and has become an important production and sales country in the world. Based on this, this paper studies the current situation and existing problems of China’s plug-in hybrid electric vehicle export trade, and proposes improved countermeasures, which is conducive to improving the export competitiveness of China’s plug-in hybrid electric vehicles.