검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/ NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.
        5,200원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focuses on the adsorption of organic matter mainly COD from pretreated landfill leachate of Lamdeng Khunou Solid Waste Management Plant, Manipur, India through the employment of H3PO4 treated activated carbon derived from Parkia speciosa (Petai) pods (PPAC). The adsorbent was analyzed for morphological and surface characterization by various methods including, Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Analysis (EDAX), Brunauer–Emmett–Teller (BET) surface area and pH at zero point charges ( pHZPC). The impacts of adsorption processes such as initial pH, temperature, equilibrium time and dose of adsorbent were considered to evaluate the performance of PPAC. At 20 °C, PPAC showed maximum COD removal of 93% within 90 min contact time, at optimum pH 2. Adsorption kinetic was able to explain by Lagergren’s pseudo-second-order equation and intraparticular diffusion models suggesting the combined behavior of both the physical and chemical adsorption of COD on PPAC. Through thermodynamics and isotherm studies, the adsorption of COD on PPAC is revealed to be exothermic with maximum monolayer coverage of 200 mg COD/g PPAC. The performance of the PPAC adsorbent is also compared with other existing reported adsorbents for treating leachate.
        4,900원
        3.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on “Water Quality Monitoring Networks” in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.
        4,000원
        4.
        2007.02 구독 인증기관 무료, 개인회원 유료
        This study presented the plan for treatment plant as investigating the technical examination of existing landfill leachate treatment plant at Geumgo-Dong and the plan of landfill leachate treatment with sewage treatment. The R/O process in 1st stage landfill leachate treatment plant(plant capacity:150m3/d) was closed in consideration of economical aspect and efficiency. It is to be desired that the 1st stage and 2nd stage landfill leachate treatment (plant capacity: 250m3/d) are combined, and are converted the Pretreatment process with nitrogen treatment process, and after total landfill treatment leachate happened from landfill site is pretreated it is transferred the sewage treatment plant. Ammonia nitrogen load of landfill leachate that was transferredthe sewage treatment plant(plant capacity: 300,000m3/d). This load is no problem at now, but it is need change the inflow line for sewage treatment plant and the enlargement of pretreatment process in case that the raw landfill leachate is increased.
        5,400원
        5.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was aimed to investigate treatment feasibility of leachate from D landfill that is located in gyr대ungbuk. From the analytical results of leachate, organic and nonbiodegradable matters were contained in high concentration. Thus chemical treatment was introduced to degrade nonbiodegradable matters in pre or post biological process. Two types of Fenton oxidation were adapted in this study. The first one is pre treatment process before biological treatment. The second one is post treatment process after biological treatment. The optimal conditions of both treatment methods were investigated as follows. In case of pre treatment process, the optimal conditions appeared in Fe+2/H2O2(mmol/mmol): 0.1, H2O2/CODcr(mg/mg): 27.0, pH: 3 and reaction time: 2hrs. On the other hand, in case of post treatment process, the optimal conditions appeared in Fe2+(mmol/mmol): 0.14, H2O2/CODcr(mg/mg): 57.4, pH: 3 and reaction time: 1.25hrs. In the above optimal conditions, high COD removal was obtained in pre and post treatment process. Also it can expect that Fenton oxidation converted nonbiodegradable matters into biodegradable matters.
        4,000원
        7.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        In order to photocatalytically treat organic matter (CODCr) and chromaticity effectively, chemical coagulation and sedimentation processes were employed as a pretreatment of the leachate produced from landfill in Jeju Island. This was performed using FeCl3・6H2O as a coagulant. For the treated leachate, UV/TiO2 and UV/TiO2/H2O2 systems were investigated, using 4 types of UV lamps, including an ozone lamp (24 W), TiO2 as a photocatalyst, and/or H2O2 as an initiator or inhibitor for photocatalytic degradation. In the chemical coagulation and sedimentation process using FeCl3・6H2O, optimum removal was achieved with an initial pH of 6, and a coagulant dosage of 2.0 g/L, culminating in the removal of 40% CODCr and 81% chromaticity. For the UV/TiO2 system utilizing an ozone lamp and 3 g/L of TiO2, the optimum condition was obtained at pH 5. However, the treated CODCr and chromaticity did not meet the emission standards (CODCr: 400 mg/L, chromaticity: 200 degrees) in a clean area. However, for a UV/TiO2/H2O2 system using 1.54 g/L of H2O2 in addition to the above optimum UV/TiO2 system, the results were 395 mg/L and 160 degrees, respectively, which were within the emission standard limits. The effect of the UV lamp on the removal of CODCr, and chromaticity of the leachate decreased in the order of ozone (24 W) lamp > 254 nm (24 W) lamp > ozone (14 W) lamp > 254 nm (14 W) lamp. Only CODCr and chromaticity treated with the ozone (24 W) lamp met the emission standards.
        8.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        The sanitary landfill method not only stops leakage of leachate and landfill gas to the outside, it also prevents water or air ingress. These methods significantly reduce the environmental contamination of landfills. Recently, landfilling of organic wastes such as sewage sludge and food waste has been forbidden, and landfilled wastes are dried. In addition, the water supply from outside is blocked, and the inside of the landfill remains very dry using the sanitary landfill method. At present, municipal solid-waste landfills have a generalized landfill-gas recovery and energy conversion. However, delayed decomposition of waste due to drying of the landfill will prolong the post-management period and reduce the amount of landfill gas after final disposal, which has a serious impact on the economics. In this study, a leachate recirculation facility was installed at the SUDOKWON landfill site in Incheon to prevent drying of the inside of the landfill. We investigated the effects of leachate recirculation on landfill gas evolution by observing the changes in water content and landfill-gas collection. As a result, the amount of landfill gas collected after recycling the leachate for about 34 months showed an increase of about 71% compared to the control. Therefore, the increase of water content through leachate recirculation greatly influences landfill-gas production, and it can increase the return from the landfill-gas energy project.
        9.
        2017.05 서비스 종료(열람 제한)
        최근 도시화 및 인구 밀집화로 인해 폐기물 발생량이 급격하게 늘어나고 있으며, 매립장 내 수분이 매립된 쓰레기에 침투하여 발생하는 침출수의 양 또한 증가하는 문제가 발생하고 있다. 이러한 침출수 내 함유된 고농도의 암모니아성 질소는 그 자체의 독성으로 인해 비교적 독성에 취약한 질산화 미생물에게 영향을 끼쳐 질산화 반응을 저해한다. 이와같이 생물학적 처리가 어려운 침출수와 같은 경우 화학적 침전법인 Struvite 결정화법이 현실적인 대안이 될 수 있다. Struvite는 MAP(magnesium ammonium phosphate, MgNH4PO4・6H2O)라고 알려져 있으며 고농도의 질소와 인을 동시에 처리할 수 있으며 반응시간이 짧아 별도의 처리시설이 불필요하다는 장점이 있다. 따라서 본 연구에서는 생물학적으로 처리가 곤란한 침출수를 struvite로 처리하고자 하였으며 제거효율을 극대화하기 위해 결정화 영향인자인 pH와 마그네슘, 인의 몰비에 대해 살펴보았다. Struvite 결정화시 pH 9.0에서 암모니아성 질소의 농도가 가장 낮게 나타났으며, 마그네슘과 인의 몰비가 클수록 암모니아성질소의 제거율이 높아지는 것으로 확인되었다. 또한 struvite 결정성장에 미치는 요인인 교반강도(G) 및 교반시간(td)에 대하여 실험한 결과 교반강도가 높을수록 암모니아성 질소의 제거율이 상승하는 것으로 나타났으며, 교반시간의 경우 5분부터 큰 차이가 없는 것으로 확인되었다.
        10.
        2017.05 서비스 종료(열람 제한)
        Struvite는 일반적으로 guanite 또는 MAP(magnesium ammonium phosphate, MgNH4PO4・6H2O)라고 알려져 있으며 마그네슘(Mg2+), 암모늄(NH4+), 인(PO43-)의 몰비가 1.0 : 1.0 : 1.0로 결합된 결정체이다. 고농도의 질소와 인을 동시에 처리할 수 있으며 반응시간이 짧아 작은 부지면적으로 처리가 가능하다는 장점이 있으나, 결정화 반응에서 슬러지가 많이 발생한다는 문제점이 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 매립지 침출수를 이용하여 struvite 결정화시 발생하는 슬러지를 seed물질로 사용하고자 하였다. 생성된 struvite를 seed로서 재이용하기 위해 seed 주입량, dry・wet 상태에 따른 실험을 진행하였다. seed의 주입량의 경우 주입량이 늘어날수록 암모니아성 질소 제거율이 증가하는 경향을 나타냈으며, dry seed보다 wet seed의 경우 제거율이 더 높았다. 따라서 struvite 결정을 seed물질로 재사용하여 sludge 발생량을 줄일 수 있으며 결정화 효율을 증대할 수 있다.
        11.
        2017.05 서비스 종료(열람 제한)
        핀란드 등의 유럽국가와 미국에서는 이미 오래전부터 매립지로 침출수를 재순환하고 있다. 이들 국가는 크게 두가지 목적으로 침출수를 재순환한다. 첫째, 소규모 매립지의 경우 별도의 침출수 처리시설이 없어 침출수처리 목적으로 매립지 내부로 침출수를 재순환하는 것이고, 두 번째는 건조한 지역의 매립지에서 수분공급을 통한 폐기물 분해활성화를 위해 재순환하는 것이다. 이러한 분해활성화는 매립가스 증산과 매립지 조기 안정화에 기여한다. 이들 국가의 재순환 방법은 단순히 살수차를 이용하여 매립현장에 침출수를 직접 살포하는 방식에서부터, 매립지 내 폐기물 층에 수평형 또는 수직형의 주입시설을 설치하여 매립지 내부로 주입하는 형태의 방식도 적용하고 있다. 국내의 경우, 최근까지 침출수를 매립지로 재순환할 수 있는 법적 근거가 없었으나, 2016년 4월에 그 근거가 마련되었다. 즉 매립지로 반입되는 폐기물의 성상이 하수슬러지 등 유기성 폐기물의 직매립 금지로 인해 매우 건조화 되었고, 또한 복토 기준 강화로 인해 매립지 내부로 우수의 유입도 크게 차단되어 매립지 내부가 많이 건조화 되었다는 것을 정부에서도 인식한 것이다. 본 연구에서는 수도권매립지 제2매립장내 2개블럭에 대하여 침출수 재순환을 통한 함수율 변화와 이에따른 매립가스 포집량 변화를 관찰하여 매립가스 증산에 어떠한 영향을 미치는지 파악하고자 하였다. 이에 3c, 4c 두 개 블록에 침출수 재순환시설을 설치하여 2013년 10월부터 2016년 12월까지 약 24만 m³의 침출수를 재순환하고 매립량 및 매립경과기간이 유사한 3d, 4d 블록과 함께 매립가스 포집량 등을 조사하였다. 그 결과 매립가스 포집량이 순메탄량 기준으로 대조구역 대비 1차년도 28.2%, 2차년도 36.7%, 3차년도에 60.6%의 증가율을 나타낸 것으로 조사되어 침출수 재순환이 매립가스 증산에 크게 영향을 미치며 이를 통해 매립가스 자원화사업에 큰 기여를 할 수 있을 것으로 판단되었다.
        12.
        2015.05 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the applicability of the microbial fuel cell for the combined treatment of food waste water and landfill leachate. Contents of the study was to develop a carbon-containing electrode material radially to maximize microbial attachment. Also to evaluate the electric energy production efficiency by combining the electrode surface coating technology. By using a microbial fuel cell organic matter and nitrogen removal efficiency is evaluated for the food waste water and landfill leachate. BET to evaluate the surface characteristics of the developing electrode (Brunauer Emmett Teller) To evaluate the coating adhesion through measurement and to evaluate the adhesion characteristics micro-organism Weighing. Excellent electrical conductivity in the development electrode platinum, cobalt, by coating a catalyst such as palladium and to evaluate the electric energy generation efficiency. Lab. scale reactor capacity is a 5 L, and to configure the cross-section and the oxidizing electrode as cathode sequentially added.
        13.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Leachate generation is an inevitable consequence of waste disposal in landfills. Numerous mathematical modelshave been developed to simulate leachate occurrence and behavior. However, these models have been successful toa limited extent because of uncertainties associated with biological, chemical, and physical processes in landfills. Inorder to predict the generation of leachate in closed landfills, correlation analysis was conducted based on precipitationin this paper. Regression analysis for deriving the correlation between precipitation and leachate generation rate wasperformed in a closed landfill. As a result, we found that the amount of leachate which is generated regardless ofprecipitation should be considered as well as the percolation of precipitation. Also, it was possible to make an fairlyaccurate prediction of leachate generation only using precipitation data in this paper. It is suggested that the amountof leachate generation is 4~8% of monthly precipitation and about 25,000m3/month of base generation regardlessof precipitation. However, the predicted values of leachate generation for the high precipitation seasons were not closeto those observed.
        14.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        A field research at Sudokwon landfill was carried to analyse the effect of leachate and organic waste water injection on decomposition characteristics of landfill waste. The moisture content after leachate (79,783 m3) addition into block 3A for 1 year increased from 27.4% to 34.1%. As a result of moisture increasement, Cellulose and Lignin proportions as indicators of waste degradability changed from 1.45 to 1.18. It is also illustrated that TOC as an indicator of CH4 production potential reduced from 22.0% to 19.5%. Comparison results of TOC after 4 months of each leachate, digested waste water, food waste water injection into block 4A shows reduction of 3.5%, 4.7% and 3.7%, respectively. Hence, it is indicated that injection of leachate and organic waste water into landfill enhances the rate of CH4 production as well as the speed of landfill stabilization.
        15.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        Landfill gas (LFG) has received considerable attention to produce a renewable energy source from waste because LFG contains about 45 ~ 55% methane. In order to improve LFG, the concept of bioreactor landfill is applied to Sudokown Landfill site. In landfill field test, the research area 3A (300 m × 300 m) and reference area 2A (300 m × 300) are prepared to compare the effect of leachate recirculation. Using injection wells, leachate is injected into the research area in the 2nd Landfill site and the distribution of moisture content in the research area is homogeneously saturated by the injected leachate. Leachate characteristics such as Alkalinity, BOD, COD, TKN, and TOC are increased with the input of the injected leachate because wastes are decomposed by the injected leachate but pH of leachate is almost not affected by the injected leachate. The production of LFG in the reseach area is improved by about 40% comparing with that in the reference area and the content of CH4 in LFG is consistently higher than 50%. Hence, it can be summarized that the production and the quality of LFG can be improved by the injection of leachate into landfill site.
        17.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        We investigated the ecological characteristics of reed populations growing in Korea and tried to select reed populations showing better growth patterns in waste landfill leachate. To examine the growth characteristics, 14 reed populations from various habitats were collected. Four reed populations were from inland reclaimed habitats, 4 reed populations from brackish or salt marsh habitats, and 6 reed populations from fresh water habitats. Total plant biomass after the treatment with landfill leachate showed that Daebudo and Nanjido reed populations had the higher biomass with 3755 g DW/pot and 3305 g DW/pot, respectively. Reed populations being sampled from the higher salinity and landfill habitats had relatively higher total biomass than that of other reed populations. Especially reed populations from landfill habitats showed higher biomass. Reed populations from Songjiho and Daebudo, which were believed to have tolerance to salt stress, also showed good growth patterns. Population from the fresh water habitats exhibited relatively lower tolerance to leachate treatment compared to others. From the results, we could conclude that reed populations from Nanjido and Daebudo with higher biomass and better salt tolerance were able to good candidates for purification of waste landfill leachate.
        19.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        The high surface area polymer, AquaMatsⓇ was used for the leachate purification process originated from the Samsan Dong Landfill in Ulsan Metropolitan City. And then, three species of dominant microbes were isolated and identified from AquaMatsⓇ. Gram staining revealed these microbes to be Gram-negative rod strains: They were identified as Agrobacterium radiobacter, Pseudomonas cepacia, Flavobacterium indologenes. All they showed no growth on media in which the leachate was added alone, but a rapid proliferation rate on media with yeast extract as nutrient requirements.
        1 2