이 연구는 CHO-CO와 PO필름이 시설 내 기온과 참 외의 특성, 수량에 미치는 영향을 구명하고자 수행되었 다. 2017년 1월 8일 기온의 일변화 조사에서 조광필름 처리구의 최고, 최저 및 평균 기온은 각각 38.9oC, 13.4oC, 20.1oC 이었고, PO필름 처리구에서 각각 40.0oC, 14.9oC, 20.3oC로 처리 간 차이가 거의 없었고, 2월부터 5월까지 과실특성, 품질 및 수량 조사에서도 처 리 간 차이가 없었다. 그러나 고온기인 8월 7일부터 1일 간 기온의 일변화에서 조광필름 처리구의 최고, 최저 및 평균 기온은 각각 47.2oC, 23.1oC, 32.4oC 이었고, PO필 름 처리구에서도 각각 50.3oC, 23.6oC, 34.0oC로 조광필름 처리구에서 최고 및 평균기온이 각각 3.1oC, 1.6oC 더 낮았다. 특히 주간의 기온만 비교해 보면 저온기에는 차이가 거의 없지만 고온기에는 PO필름에 비해 조광필 름 처리구에서 3.0oC까지 기온이 낮아지는 것을 알 수 있었다. 2017년 5월 26일부터 8월 15일까지의 고온기의 품질 및 수량 조사에서도 PO필름 처리구에 비해 조광필 름 처리구에서 과중이 371.6g으로 22.2g 더 가볍고, 태좌부의 당도는 14.5o brix로 1.4o brix 더 높고, 과피의 색도(a값)도 12.3으로 1.5 더 높고, 상품과율도 89.4%로 8.0%P 증가하였고 10a당 상품수량도 2,694kg으로 26% 증가하였다. 결론적으로 고온기에 조광필름은 참외 생산에 효과적으로 이용될 수 있을 것이다.
This study is to develop an export 1050MPa-class lightweight ductile iron castings Austempered control arm through the research process to obtain the following results. First, the structure of the optimal design Layout design and development of the component, and then achieve them through the Control Arm rigidity and optimal structure design and robust design of the focus areas of the expected stress Control Arm. Second, to develop a Control Arm reflects the high rigidity and high performance lightweight structures. Control Arm them developed to meet the design and rigidity as required by the consumer through the hollow, and to develop a process for the Core. Third, through optimum alloy composition and heat treatment methods will be derived to derive the amount of iron alloy (Cu, Ni, Mo) and Austempered heat treated and tempered condition. Fourth, through the development of optimum molding technology development component to develop the optimum ADI for the low-stiffness, high-rigidity component development, it attempts to develop a high-strength casting forming technology.
본 연구에서는 전하 조절층을 이용하여 녹색 인광 유기발광다이오드의 효율의 향상을 나타냈다. 양극성의 4,4,N,N'-dicarbazolebiphenyl (CBP)를 호스트와 전하 조절층으로 사용하여 발광층 내에서 전하의 이동을 원활하게 할 수 있다. 게다가 전하 조절층의 삽입으로 엑시톤을 효과적으로 발광층 내에 제한하여, 삼중항-삼중항 소멸 현상을 억제할 수 있음을 확인하였다. 발광층의 전체 두께는 유지하고, 전하 조절층의 변화를 준 다섯 개의 소자를 제작하여 최적화된 전하 조절층의 두께를 이용한 Device D는 외부 양자 효율 16.22%와 휘도 효율 55.76 cd/A의 성능을 보였다.
the less-reported gaseous studies have primarily dealt with chemical process stream concentrations than indoor air quality (IAQ) concentration levels. Accordingly, the current study was conducted to establish the feasibility of applying visible-light-induced TiO2 doped with sulfur (S) element to cleanse toluene and ehtyl benzene at IAQ levels. The S-doped TiO2 was prepared by applying two popular processes and two well-known methods. For both target compounds, the two coating methods exhibited different photocatalytic oxidation (PCO) efficiency. Similarly, the two S-doping processes showed different PCO efficiency. These results indicate that the coating method and doping process are important parameters which can influence PCO efficiency. Meanwhile, it was found that the PCO efficiency of ethyl benzene was higher than that of toluene. In addition, the degradation efficiency of the target compounds increased as the relative humidity (RH) decreased. The PCO efficiency varied from 44% to 74% for toluene and from 68% to 95%, as the RH decreased. Consequently, it is suggested that with appropriate RH conditions, the visible-light-assisted photocatalytic systems can also become an important tool for improving IAQ.
Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of TiO2 nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, TiO2-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the TiO2-GO composites. The average efficiencies of the TiO2-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified TiO2 powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified TiO2 powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a TiO2-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.