검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 206

        1.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Given the hazards posed by black ice, it is crucial to investigate the conditions that contribute to its formation. Two ensemble machinelearning algorithms, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were employed to forecast the occurrence of black ice using atmospheric data. Additionally, explainable artificial intelligence techniques, including Feature Importance (FI) and partial dependence Plot (PDP), were utilized to identify atmospheric conditions that significantly increase the likelihood of black ice formation. The machinelearning algorithms achieved a forecasting accuracy of 90%, demonstrating reliable performance. FI analysis revealed distinct key predictors between the algorithms: relative humidity was the most critical for RF, whereas wind speed was paramount for XGBoost. The PDP analysis identified the specific atmospheric conditions under which black ice was likely to form. This study provides detailed insights into the atmospheric precursors of frost/fog-induced black ice formation. These findings enable road managers to implement proactive winter road maintenance strategies, such as optimizing anti-icing patrol routes and displaying warnings on various message signs, thereby enhancing road safety.
        4,200원
        3.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성장 단계별 돼지의 평균 사료 섭취량을 추정하고, 각 매개변수 간의 상관분석을 통해 변수를 선별한 후, 기계학습 기반 회귀분석을 통해 돼지의 사료 섭취량(FI)을 예측하는 모델을 만들고자 한다. 본 실험은 2023년 9월 14일부터 2023년 12월 15일까지 93일 동안 진행하였다. 사료는 09:00와 17:00 하루에 2회 제공하였으며, 제공된 사료의 양은 돼지의 평균 체중의 5%를 지급하였다. 돼지의 몸무게(PBW)는 매일 09:00에 이동식 돈형기를 사용하여 측정하였다. 축산환경관리시스템(LEMS) 센서를 이용하여, 돈사 내 온도(RT), 상대습도(RH), NH3를 5분 간격으로 수집하였다. 성장 단계를 3단계로 나누었으며, 각 GS1, GS2 및 GS3으로 명명하였다. 각 성장 단계별 평균 사료 섭취량과 표준편차를 구하여, 유의미성과 성장 단계별 사료 섭취의 경향을 분석하였다. 각 모델의 성능평가( , RMSE, MAPE) 시 8:2의 비율로 데이터를 분할하여, 정확도 검증을 수행하였다. 연구 결과 성장 단계별 돼지의 사료 섭취량에 유의미한 차이(p < 0.05)가 있음과 돼지가 성장할수록 일정한 양의 사료를 섭취하는 것을 확인하였다. 또한 각 변수의 상관분석 시 FI와 PBW에서 강한 상관관계가 나타났으며(R > 0.94), 각 모델의 성능평가 결과 RFR 모델이 가장 높은 정확성(  = 0.959, RMSE = 195.9, MAPE = 5.739)을 보였다.
        4,000원
        4.
        2025.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Galaxy evolution studies require the measurement of the physical properties of galaxies at different redshifts. In this work, we build supervised machine learning models to predict the redshift and physical properties (gas-phase metallicity, stellar mass, and star formation rate) of star-forming galaxies from the broad-band and medium-band photometry covering optical to near-infrared wavelengths, and present an evaluation of the model performance. Using 55 magnitudes and colors as input features, the optimized model can predict the galaxy redshift with an accuracy of σ(Δz/1+z) = 0.008 for a redshift range of z < 0.4. The gas-phase metallicity [12 + log(O/H)], stellar mass [log(Mstar)], and star formation rate [log(SFR)] can be predicted with the accuracies of σNMAD = 0.081, 0.068, and 0.19 dex, respectively. When magnitude errors are included, the scatter in the predicted values increases, and the range of predicted values decreases, leading to biased predictions. Near-infrared magnitudes and colors (H, K, and H −K), along with optical colors in the blue wavelengths (m425–m450), are found to play important roles in the parameter prediction. Additionally, the number of input features is critical for ensuring good performance of the machine learning model. These results align with the underlying scaling relations between physical parameters for star-forming galaxies, demonstrating the potential of using medium-band surveys to study galaxy scaling relations with large sample of galaxies.
        4,200원
        5.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물 증발산량은 잠재 증발산량에서 작물계수를 곱하여 작 물의 요수량을 산출할 수 있어 수자원 관리에 널리 사용되는  방법이다. 특히 유엔식량농업기구(FAO)가 관개 및 배수 논 문 NO.56에서 발표한 Penman-Monteith 방정식(FAO 56-PM) 은 잠재 증발산량을 추정하는 표준방법으로, 평균온도, 최대 온도, 최소온도, 상대습도, 풍속 및 일사량의 6가지 기상 데이 터가 필요하다. 그러나 농경지 인근에 설치된 기상센서는 설 치 및 유지보수 비용이 높아 결측, 이상치와 같은 데이터 신뢰 성 문제를 야기하여 정확한 증발산량 계산을 복잡하게 만든 다. 본 연구에서는 인근 기상청의 데이터를 사용하여 필요한 6가지 기상 변수를 예측함으로써 기상 센서 없이 작물 증발산량을 추정할 수 있는지 조사하였다. 우리는 기상청의 API를 통해 수집할 수 있는 22개의 기상 변수를 입력 데이터로 활용 했다. 9개의 회귀 모델을 학습한 후 성능에 따라 상위 3개를 선 택하고 하이퍼파라미터 튜닝을 적용하여 최적의 모델을 식별 했다. 가장 좋은 성능을 보인 모델은 Extreme Gradient Boosting Regression(XGBR)이었으며 평균온도, 최대온도, 최소온도, 상대습도, 풍속 및 일사량에서 결정계수(R2)가 각 0.98, 0.99, 0.99, 0.91, 0.72, 0.86로 높은 결과를 얻을 수 있었다. 이러한 결과는 XGBR 모델이 작물 기상 데이터를 사용하여 작물 증 발산 모델에 필요한 입력 값을 정확하게 예측할 수 있어 값비 싼 기상 센서가 필요 없음을 시사한다. 이 접근 방식은 센서 설 치 및 유지보수가 어려운 지역에서 특히 유용할 수 있으며, 직 접적인 센서 데이터 없이도 표준 증발산 모델의 사용을 가능 하게 한다.
        4,300원
        6.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 표현 형질 생육 데이터인 엽장, 엽 수와 기상 데이 터인 생육도일을 활용하여 여러 기계 학습을 통해 마늘의 생 체중을 예측하는 모델을 개발하고자 하였다. 검증 데이터에 서 random forest 모델의 결정계수가 0.924, 평균제곱근오차 (g)는 13.583 그리고 평균절대오차는 8.885로 가장 우수하였 다. 평가 데이터에서는 Catboost 모델이 결정계수가 0.928, 평균제곱근오차(g)는 13.486 그리고 평균절대오차는 9.181 로 가장 우수하였다. 그러나 Catboost, Random forest 그리고 LightGBM 모델을 0.5, 0.3 그리고 0.2 가중치를 두어 학습한 Weighted ensemble 모델이 마늘 생체중 예측의 검증 및 평가 에 있어서 검증 데이터의 결정계수가 0.922, 평균제곱근오차 (g)가 13.752 그리고 평균절대오차는 8.877이었으며 평가 데 이터에서는 결정계수가 0.923, 평균제곱근오차(g)가 13.992 그리고 평균절대오차가 9.437로 두 번째로 우수한 결과를 나 타내었다. 이러한 결과들을 종합적으로 미루어 보았을 때, Weighted ensemble 모델이 모델의 안정성 측면에서 최적의 모델이라고 판단하였다. 따라서 농가들이 표현 형질과 기상 데이터만으로도 기계학습 기법을 통하여 마늘의 생체중 예측 을 통해 작형 모니터링이 가능할 것으로 보이며 추가적으로 다년도 데이터 취득과 검증을 통하여 성능을 고도화가 가능할 것으로 판단된다.
        4,000원
        7.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Automated classification systems using Artificial Intelligence (AI) and Machine Learning (ML) can enhance accuracy and efficiency in diagnosing pet skin diseases within veterinary medicine. Objectives: This study created a system that classifies pet skin diseases by evaluating multiple ML models to determine which method is most effective. Design: Comparative experimental study. Methods: Pet skin disease images were obtained from AIHub. Models, including Multi-Layer Perceptron (MLP), Boosted Stacking Ensemble (BSE), H2O AutoML, Random Forest, and Tree-based Pipeline Optimization Tool (TPOT), were trained and their accuracy assessed. Results: The TPOT achieved the highest accuracy (94.50 percent), due to automated pipeline optimization and ensemble learning. H2O AutoML also performed well at 94.25 percent, illustrating the effectiveness of automated selection for intricate imaging tasks. Other models scored lower. Conclusion: These findings highlight the potential of AI-driven solutions for faster and more precise pet skin disease diagnoses. Future investigations should incorporate broader disease varieties, multimodal data, and clinical validations to solidify the practicality of these approaches in veterinary medicine.
        4,000원
        8.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a machine learning-based tool life prediction model using spindle power data collected from real manufacturing environments. The primary objective is to monitor tool wear and predict optimal replacement times, thereby enhancing manufacturing efficiency and product quality in smart factory settings. Accurate tool life prediction is critical for reducing downtime, minimizing costs, and maintaining consistent product standards. Six machine learning models, including Random Forest, Decision Tree, Support Vector Regressor, Linear Regression, XGBoost, and LightGBM, were evaluated for their predictive performance. Among these, the Random Forest Regressor demonstrated the highest accuracy with R2 value of 0.92, making it the most suitable for tool wear prediction. Linear Regression also provided detailed insights into the relationship between tool usage and spindle power, offering a practical alternative for precise predictions in scenarios with consistent data patterns. The results highlight the potential for real-time monitoring and predictive maintenance, significantly reducing downtime, optimizing tool usage, and improving operational efficiency. Challenges such as data variability, real-world noise, and model generalizability across diverse processes remain areas for future exploration. This work contributes to advancing smart manufacturing by integrating data-driven approaches into operational workflows and enabling sustainable, cost-effective production environments.
        4,000원
        9.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bearing-shaft systems are essential components in various automated manufacturing processes, primarily designed for the efficient rotation of a main shaft by a motor. Accurate fault detection is critical for operating manufacturing processes, yet challenges remain in sensor selection and optimization regarding types, locations, and positioning. Sound signals present a viable solution for fault detection, as microphones can capture mechanical sounds from remote locations and have been traditionally employed for monitoring machine health. However, recordings in real industrial environments always contain non-negligible ambient noise, which hampers effective fault detection. Utilizing a high-performance microphone for noise cancellation can be cost-prohibitive and impractical in actual manufacturing sites, therefore to address these challenges, we proposed a convolution neural network-based methodology for fault detection that analyzes the mechanical sounds generated from the bearing-shaft system in the form of Log-mel spectrograms. To mitigate the impact of environmental noise in recordings made with commercial microphones, we also developed a denoising autoencoder that operates without requiring any expert knowledge of the system. The proposed DAE-CNN model demonstrates high performance in fault detection regardless of whether environmental noise is included(98.1%) or not(100%). It indicates that the proposed methodology effectively preserves significant signal features while overcoming the negative influence of ambient noise present in the collected datasets in both fault detection and fault type classification.
        4,500원
        10.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the impact of ESG (Environmental, Social, and Governance) activities on Corporate Financial Performance(CFP) using machine learning techniques. To address the linear limitations of traditional multiple regression analysis, the study employs AutoML (Automated Machine Learning) to capture the nonlinear relationships between ESG activities and CFP. The dataset consists of 635 companies listed on KOSPI and KOSDAQ from 2013 to 2021, with Tobin's Q used as the dependent variable representing CFP. The results show that machine learning models outperformed traditional regression models in predicting firm value. In particular, the Extreme Gradient Boosting (XGBoost) model exhibited the best predictive performance. Among ESG activities, the Social (S) indicator had a positive effect on CFP, suggesting that corporate social responsibility enhances corporate reputation and trust, leading to long-term positive outcomes. In contrast, the Environmental (E) and Governance (G) indicators had negative effects in the short term, likely due to factors such as the initial costs associated with environmental investments or governance improvements. Using the SHAP (Shapley Additive exPlanations) technique to evaluate the importance of each variable, it was found that Return on Assets (ROA), firm size (SIZE), and foreign ownership (FOR) were key factors influencing CFP. ROA and foreign ownership had positive effects on firm value, while major shareholder ownership (MASR) showed a negative impact. This study differentiates itself from previous research by analyzing the nonlinear effects of ESG activities on CFP and presents a more accurate and interpretable prediction model by incorporating machine learning and XAI (Explainable AI) techniques.
        4,200원
        11.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines career trajectories among women with career breaks, using data from the 2019 National Survey of Women on Career Breaks (n=1,138). The data underwent preprocessing, including outlier detection, feature scaling, and class imbalance correction with SMOTEENN. Three machine learning models were evaluated, with the Random Forest model achieving the best performance. Key predictors included flexible leave policies, social insurance, remote work options, and job security. The findings highlight the importance of supportive organizational policies in retaining female employees. Future research should explore longitudinal impacts and additional variables like organizational culture.
        4,000원
        12.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to improve the accuracy of road pavement design by comparing and analyzing various statistical and machine-learning techniques for predicting asphalt layer thickness, focusing on regional roads in Pakistan. The explanatory variables selected for this study included the annual average daily traffic (AADT), subbase thickness, and subgrade California bearing ratio (CBR) values from six cities in Pakistan. The statistical prediction models used were multiple linear regression (MLR), support vector regression (SVR), random forest, and XGBoost. The performance of each model was evaluated using the mean absolute percentage error (MAPE) and root-mean-square error (RMSE). The analysis results indicated that the AADT was the most influential variable affecting the asphalt layer thickness. Among the models, the MLR demonstrated the best predictive performance. While XGBoost had a relatively strong performance among the machine-learning techniques, the traditional statistical model, MLR, still outperformed it in certain regions. This study emphasized the need for customized pavement designs that reflect the traffic and environmental conditions specific to regional roads in Pakistan. This finding suggests that future research should incorporate additional variables and data for a more in-depth analysis.
        4,000원
        14.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters—namely, milling time, reinforcement ratio, and size—that affect the composite’s physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.
        4,000원
        15.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 15차 bézier 곡선을 사용하여 기존의 연구보다 더 유연한 빔 형상을 설계하고, 더 넓은 설계 공간에서 최적 설계를 수 행하여 최적의 열전도도를 갖는 빔 형상을 설계한다. 설계 공간이 넓어지면 그 만큼 계산양이 증가하게 되는데, 고차원 변수 공간에서 효율적으로 작동하는 인공신경망을 사용하여 최적 설계를 가속화하여 계산 한계를 극복하였다. 더 나아가 최적의 탄성계수를 갖는 빔의 형상과 비교하였으며 열전도와 탄성학 사이의 수학적 유사성을 이용하여 빔 형상을 설명한다. 본 연구에서는 인공지능을 활용 한 형상 최적설계를 통해 기존의 한계를 뛰어넘는 격자구조의 빔 형상을 제안한다. 먼저, SC(Simple Cubic), BC(Body Centered Cubic) 격자 구조 빔 형상을 bézier 곡선으로 모델링하고 bézier 곡선의 제어점 좌표를 무작위로 설정하여 학습데이터를 확보하였다. NN(Neural Network) 및 GA(Genetic Algorithm)를 통해 우수한 유효 열전도도를 가진 빔 형상을 생성하여 최적의 빔 형상을 설계하였 다. 본 연구를 통해 추후 다양한 열 조건에서 격자구조의 적절한 구조적 해답을 제시할 수 있을 것으로 기대된다.
        4,000원
        16.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
        4,000원
        17.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many school buildings are vulnerable to earthquakes because they were built before mandatory seismic design was applied. This study uses machine learning to develop an algorithm that rapidly constructs an optimal reinforcement scheme with simple information for non-ductile reinforced concrete school buildings built according to standard design drawings in the 1980s. We utilize a decision tree (DT) model that can conservatively predict the failure type of reinforced concrete columns through machine learning that rapidly determines the failure type of reinforced concrete columns with simple information, and through this, a methodology is developed to construct an optimal reinforcement scheme for the confinement ratio (CR) for ductility enhancement and the stiffness ratio (SR) for stiffness enhancement. By examining the failure types of columns according to changes in confinement ratio and stiffness ratio, we propose a retrofit scheme for school buildings with masonry walls and present the maximum applicable stiffness ratio and the allowable range of stiffness ratio increase for the minimum and maximum values of confinement ratio. This retrofit scheme construction methodology allows for faster construction than existing analysis methods.
        4,000원
        18.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        19.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성격이 정신병리를 예측하는 가를 지도식 기계학습 방법론을 통해 확인해보고자 하였다. 이를 위해, 한국판 싱어루미스 심리 유형 검사(K-SLTDI) 제 2판과, KSCL-95 검사를 사용하여 전국의 총 521명의 성인을 대상으로 비대면 설문조사를 실시하였다. 예측 분석을 위하여 군집분석, 분류분석, 회귀기반 디코딩을 수행하였다. 그 결과 정신병리의 심 각도를 반영하는 4개의 군집을 확인하였다. 또한, 한국판 싱어루미스 심리 유형 검사로 정신병리 수준에 대한 가설 기반 및 데이터 기반 심각도가 반영된 군집을 예측할 수 있었으며, 이는 전체 KSCL-95 및 3개의 상위 범주, 그리고 타당도에 대해 모두 정확하게 분류되었다. 회귀기반 디코딩 결과는 SLTDI 유형검사는 전체 검사 데이터를 활용하였을 때 임상수준 을 유의미하게 예측할 수 있었으며, KSCL-95의 22가지 하위 범주 중 긍정왜곡, 우울, 불안, 강박, PTSD, 정신증, 스트레 스 취약성, 대인민감, 낮은 조절을 유의수준에서 개별적으로 예측하였다. 이러한 연구 결과는 성격 검사가 정신병리의 심 각도에 대한 선별 도구로 활용될 수 있고 예방 및 조기 개입 전략을 구현하는 데 활용될 수 있음을 시사한다.
        4,300원
        20.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로 부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적 으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
        6,000원
        1 2 3 4 5