검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 806

        105.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
        4,000원
        106.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg- BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.
        4,000원
        107.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paper studied the climbing structure and magnet selection method of exploration platform utilized for large-scale steel structures such as vessel surface. With respect to wall climbing robots, the study proposed a stable operation structure even in rapid incline change of vessel surface. Since the wheel-based operating method is hard to work flexibly in inclination changes, we employed joints and designed the robot to have a rotation joint in the center. The arrangement of wheels is an important aspect of this structure. Viewed from the side, the robot wheels should overlap with each other to have intersection points. The wheels here are ring-type permanent magnets and serve as a tool of attachment on walls. Based on the conditions identified through formula modeling, we proposed the required magnetic force. Important factors needed for magnetic force setup include platform weight, angle between ground and inclined plane, and friction coefficient. We considered only the required magnetic force for the stable adhesion of circular magnet while making not a separate mention about the necessary force for directional locomotion. The analysis results of ANSYS Maxwell are applied to magnetic attachment. Based on the final analysis results, we built a platform and found it did not slip and stayed attached on steel plate.
        4,000원
        108.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.
        4,000원
        114.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 두경부의 자기공명 역동적(dynamic) 혈관조영술(DCE-MRA)에서 조영제(1.0 mol/ℓ)와 생리식염수의 희석 주입 비율에 따른 신호강도 차이를 비교 분석하였다. 연구 방법으로는 3.0 T MRI 장치에서 자동주입기를 이용하여 조영제와 생리식염수의 희석주입 비율(조영제:생리식염수)을 10:0 (1000 mmol/ℓ, 조영제 원액), 7:3 (700 mmol/ℓ), 5:5 (500 mmol/ℓ)로 3가지 군으로 하였다. 주입 조건으로는 오른팔 정맥으로 주입 속도 3.0 ㎖/sec으로 하였고 용량은 0.1 ㎖/㎏으로 하였다. 신호강도 측정은 동맥혈관 7 부위와 정맥혈관 2 부위로 하였고 역동적 영상에서의 측정 시기는 정맥이 침범하기 직전의 순수 동맥기, 최고신호 동맥기, 최고신호 정맥기로 구분 하였다. 연구 결과 최고신호 동맥기의 횡정맥동을 제외한 모든 측정 시기의 10:0 (1000 mmol/ℓ), 7:3 (700 mmol/ℓ), 5:5 (500 mmol/ℓ) 순서로 신호강도가 증가하였다(p<0.01). 따라서 두경부의 DCE-MRA에서 조영제와 생리식염수의 5:5 희석주입을 통하여 최고의 신호강도를 구현할 수 있고 최적의 영상을 얻을 수 있다.
        4,000원
        115.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전기장에 의해 생성 된 진공 분극은 양자장에서 가상 전자-양전자 쌍의 재배열을 만든다. 그러나 정지 전하가 다른 장소로 이동할 때, 정지 전하에 의해 생성된 전기장은 사라질 것이다. 이때, 정지 전하에 의해 분극화된 가상 전자-양전자 쌍들은 같이 소멸된다. 가상 전자-양전자의 소멸 과정에서 가상 광자가 생성되는데, 이때 만들어지는 가상 광자들은 양자 전기 역학에서 자기력을 매개하는 광자가 된다. 이로 인하여, 전하의 이동은 자기장을 발생시키고, 전기장의 변화가 자기장을 생성하게 하는 원인이 된다.
        3,000원
        118.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 oC after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 oC led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.
        4,000원
        119.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The magnetocaloric effect (MCE), which is the reversible temperature change of magnetic materials due to an applied magnetic field, occurs largely in the vicinity of the magnetic phase transition temperature. This phenomenon can be used to induce magnetic refrigeration, a viable, energy-efficient solid-state cooling technology. Recently, Metal-organic frameworks (MOFs), due to their structural diversity of tunable crystalline pore structure and chemical functionality, have been studied as good candidates for magnetic refrigeration materials in the cryogenic region. In cryogenic cooling applications, MCE using MOF can have great potential, and is even considered comparable to conventional lanthanum alloys and magnetic nanoparticles. Owing to the presence of large internal pores, however, MOF also exhibits the drawback of low magnetic density. To overcome this problem, therefore, recent reports in literature that achieve high magnetic entropy change using a dense structure formation and ligand tuning are introduced.
        4,000원
        120.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A magnetic abrasive finishing process was proposed for improving the surface accuracy of microscale -diameter STS 304 bar used in many applications such as, medical, aerospace, and nuclear industries. Most of the previous research has already explored the conventional finishing technique to improve the accuracy of material in terms of the surface roughness. However, their results are still not good enough for the requirement in the today’s engineering industry. Especially, when the workpiece is a material of microscale-diameter, use of such conventional processes becomes impossible because they entail the application of high pressures that may damage the surface to be finished. Moreover, less control is available over these conventional finishing processes. In this study, an ultra-high-precision magnetic abrasive finishing process was applied to the precision machining of microscale-diameter STS 304 bar and the experimental work are performed with many critical parameters such as, different workpiece revolution speeds, abrasive grain sizes, different finishing temperatures, and pole vibrations. The results showed that in The initial surface roughness of 0.20 μm (Ra) was decreased to 0.025 μm with 0.5 μm of abrasive grain size and pole vibration 12Hz at 40,000 rpm.
        4,000원