검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured ZnO materials have been studied extensively because of their functional properties. This paper presents a composite material of zinc oxide quantum dots (ZnO QDs) and porous carbon using a one-step carbonization process. The direct carbonization of a metal–organic complex generates mesostructured porous carbon with a homogeneous distribution of ZnO QDs. The structural and morphological properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The resulting ZnO QDs@porous carbon composite delivers a high specific capacity of 990 mAh g−1 at 100 mA g−1, 357 mAh g−1 at 2 A g−1, and high reversibility when evaluated as an anode for lithium ion batteries.
        4,000원
        2.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.
        4,000원
        3.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PVDF was used as a polymeric matrix material in this work. Nickel powders with average particles size of 200 nm or 72 nm were used as fillers. PVDF/metal submicro- and nanocomposites were prepared by means of a mixing in twin screw extruder and planetary ball mill, respectively. All samples were prepared by hot pressing method. Their electrical, thermal and morphological properties were examined by dielectric spectroscopy, DSC, FTIR, XRD, optical microscopy and scanning electron microscopy. It was found that all properties of composites were strongly modified depending on the content of metal powders and filler particles size. Particularly, specific volume resistivity of PVDF/Ni composite with 0.2 wt.% of Ni was increased by factor of 1.5~4.
        4,000원
        4.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the hydrogen storage behaviors of carbon nanotubes (CNTs)/metal-organic frameworks-5 (MOF-5) hybrid composites (CNTs/MOF-5) were studied. Hydrothermal synthesis of MOF-5 was conducted by conventional convection heating using 1-methyl-2-pyrrolidone (NMP) as a solvent. Morphological characteristics and average size of the CNTs/MOF-5 were also obtained using a scanning electron microscopy (SEM). The pore structure and specific surface area of the CNTs/MOF-5 were analyzed by N2/77 K adsorption isotherms. The capacity of hydrogen storage of the CNTs/MOF-5 was investigated at 298 K/100 bar. As a result, the CNTs/MOF-5 had crystalline structures which were formed by hybrid synthesis process. It was noted that the CNTs/MOF-5 can be potentially encouraging materials for hydrogen adsorption and storage applications at room temperature.
        3,000원
        5.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The experimental data from the central composite design runs were utilized for mathematical models far the drilling characteristics containing linear, quadratic and interactive effects of the parameters such as volume fraction of TiC in the composites, drill speed, feed rate and drill diameter. The models were developed via stepwise selection where the insignificant effects were removed using t-test. The models were subjected to optimization of maximizing drill life and satisfying the other constraints.
        4,000원
        8.
        1999.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        금속기지 복합물은 구조용 재료로서 매우 우수한 성질을 지니고 있어 광범위하게 연구되어져 왔다. Al2O3와 SiC는 그들의 우수한 기계적 특성 때문에 일반적인 보강재로서 사용되어져 왔다. 그러나 이들 세라믹 보강재는 비싼 재조 비용 때문에 특별한 목적을 위해서만 한정되어 사용되어져 왔다. 본 연구에서는 우리는 Al 합금기지 복합물에서 SHS법에 의해 합성된 Al2O3-SiC 분말의 보강재로서의 응용 가능성을 살펴보았다. 또한 Al2O3단섬유를 Al기지 하이브리드 복합물에 적용하기 위하여 합성된 분말과 함께 첨가하였다. 25vol% 강화재의 복합물을 제조하기 위하여 용탕단조법을 사용하였다. 미세구조와 결정구조는 SEM, OM 그리고 XRD로 관찰하였고 압축시험과 마모시험으로 기계적인 성질들을 조사하였다.
        4,000원
        9.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 in diameter, as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at for 36 hrs and forced drying at 10 for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120 under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite phase at the interfaces of SiC particulates.
        4,000원
        12.
        1994.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The variation of the microstructures and the mechanical properties with varying vacuum hot pressing temperature and pressure was investigated in PyM processed 20 vol%) SiCw/ 2124Al composites. As increasing the vacuum hot pressing temperature, the aspect ratio of whiskers and density of composites increased due to the softening of 2124Al matrix with the increased amount of liquid phase. The tensile strength of composite increased with increasing vacuum hot pressing temperature up to and became saturated above , To attain the high densification of composites above 99%, the vacuum hot pressing pressure was needed to be above 70 MPa. However, the higher vacuum hot pressing pressure above 70 MPa was not effective to increase the tensile strength due to the reduced aspect ratio of SiC whiskers from damage of whiskers during vacuum hot pressing. A phenomenological equation to predict the tensile strength of /2124AI composite was proposed as a function including two microstructural parameters, i.e. density of composites and aspect ratio of whiskers. The tensile strength of /2124AI were found more sensitive to the porosity than other P/M materials due to the higher stress concentration and reduced load transfer efficiency by the pores locating at whisker/matrix interfaces.
        4,000원
        14.
        1994.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 , 40 , SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 ) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 ) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 SiCp Hv--159 kg/mm2 for Al-40 SiCp] were obtained through the solution heat treatment at for 2 hrs and aging at , and there by the resistance were improved.
        4,000원