The diversity of smart EV(electric vehicle)-related industries is increasing due to the growth of battery-based eco-friendly electric vehicle component material technology, and labor-intensive industries such as logistics, manufacturing, food, agriculture, and service have invested in and studied automation for a long time. Accordingly, various types of robots such as autonomous mobile robots and collaborative robots are being utilized for each process to improve industrial engineering such as optimization, productivity management, and work management. The technology that should accompany this unmanned automobile industry is unmanned automatic charging technology, and if autonomous mobile robots are manually charged, the utility of autonomous mobile robots will not be maximized. In this paper, we conducted a study on the technology of unmanned charging of autonomous mobile robots using charging terminal docking and undocking technology using an unmanned charging system composed of hardware such as a monocular camera, multi-joint robot, gripper, and server. In an experiment to evaluate the performance of the system, the average charging terminal recognition rate was 98%, and the average charging terminal recognition speed was 0.0099 seconds. In addition, an experiment was conducted to evaluate the docking and undocking success rate of the charging terminal, and the experimental results showed an average success rate of 99%.
The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix Ar by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.
The key motivation of this study is for a style of the sensor arrangement to have an effect on the localization performance of mobile robots in case of using sonar sensors. In general robot platforms with sonar sensors, sonar sensors are supposed to be radially arranged on their rotational axis of mobile robots. However, relevant limits to several functions required for their autonomous navigation occur unexpectedly, because a sonar sensor generally has the negative nature of its wide beam width together with the specular reflection. We present a new strategy of the sonar sensor arrangement capable of enhancing the localization performance. Sonar sensors are intended to be arranged nonradially (twistedly expressed in this paper) on their rotational axis. The localization scheme called STARER: Sonar-Twisted ARrangement localizER is based on the extended Kalman filter (EKF) with occupancy grid maps. Experimental results demonstrate the validity and robustness of the proposed method for the localization of mobile robots.
In this research we investigate motion controller performance for mobile robots according to changes in the control loop sampling time. As a result, we suggest a proper range of the sample time, which can minimize final posture errors while improving tracking capability of the controller. For controller implementation into real mobile robots, we use a smooth and continuous motion controller, which can respect robot’s path curvature limitation. We examine motion control performance in experimental tests while changing the control loop sampling time. Toward this goal, we compare and analyze experimental results using two different mobile robot platforms; one with real-time control and powerful hardware capability and the other with non-real-time control and limited hardware capability.
This study introduces the accurate correction method of bearing position error of mobile robots using Stargazer sensor. The mobile robots require some vital functions including map building, localization, path planning, obstacle avoidance for autonomous navigation. In most cases, the localization of angular pose of a robot is essential because its result has a great effect on the performance of the other functions. We demonstrated the validity of the proposed method with the results of real experiments and applied it to the photographer robot for correct bearing position error at the moment of taking a picture.
This paper shows how effectively sonar data can be worked with approaches suggested for the indoor SLAM (Simultaneous Localization And Mapping). A sonar sensor occasionally provides wrong distance range due to the wide beam width and the specular reflection phenomenon. To overcome weak points enough to use for the SLAM, several approaches are proposed. First, distance ranges acquired from the same object have been stored by using the FPA (Footprint-association) model, which associates two sonar footprints into a hypothesized circle frame. Using the Least Squares method, a line feature is extracted from the data stored through the FPA model. By using raw sonar data together with the extracted features as observations, the visibility for landmarks can be improved, and the SLAM performance can be stabilized. Additionally, the SP (Symmetries and Perturbations) model, a representation of uncertain geometric information that combines the probability theory and the theory of symmetries, is applied in this paper. The proposed methods have been tested in a real home environment with a mobile robot.
In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.
In this paper, we present a finite-time sliding mode control (FSMC) with an integral finitetime sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.
The Expanded Guide Circle (EGC) method has been originally proposed as the guidance navigation method for improving the efficiency of the remote operation using the sensory information. The previous algorithm is, however, concerned only for the omni-directional mobile robot, so it needs to suggest a suitable one for a mobile robot with non-holonomic constraints. The ego-kinematic transform is a method to map points of R2 into the ego-kinematic space which implicitly represents non-holonomic constraints for admissible paths. Thus, robots with non-holonomic constraints in the ego-kinematic space can be considered as “free-flying object”. In this paper, we propose an effective obstacle avoidance method for mobile robots with non-holonomic constraints by applying EGC method in the ego-kinematic space using the ego-kinematic transformation. This proposed method shows that it works better for non-holonomic mobile robots such as differential-drive robot than the original one. The simulation results show its effectiveness of performance.
The localization of the robot is one of the most important factors of navigating mobile robots. The use of featured information of landmarks is one approach to estimate the location of the robot. This approach can be classified into two categories: the natural-landmark-based and artificial-landmark-based approach. Natural landmarks are suitable for any environment, but they may not be sufficient for localization in the less featured or dynamic environment. On the other hand, artificial landmarks may generate shaded areas due to space constraints. In order to improve these disadvantages, this paper presents a novel development of the localization system by using artificial and natural-landmarks-based approach on a topological map. The proposed localization system can recognize far or near landmarks without any distortion by using landmark tracking system based on top-view image transform. The camera is rotated by distance of landmark. The experiment shows a result of performing position recognition without shading section by applying the proposed system with a small number of artificial landmarks in the mobile robot.
For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.
This study proposes a multi-robot system, using multiple autonomous robots, to explore concrete structures and assist in their maintenance by sealing any cracks present in the structure. The proposed system employed a new self-localization method that is essential for autonomous robots, along with a visualization system to recognize the external environment and to detect and explore cracks efficiently. Moreover, more efficient crack search in an unknown environment became possible by arranging the robots into search areas divided depending on the surrounding situations. Operations with increased efficiency were also realized by overcoming the disadvantages of the infeasible logical behavioral model design with only six basic behavioral strategies based on distributed control-one of the methods to control swarm robots. Finally, this study investigated the efficiency of the proposed multi-robot system via basic sensor testing and simulation.
Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.
A local map-based exploration algorithm for mobile robots is presented. Segmented frontiers and their relative transformations constitute a tree structure. By the proposed efficient frontier segmentation and a local map management method, a robot can reduce the unknown area and update the local grid map which is assigned to each frontier node. Although this local map-based exploration method uses only local maps and their adjacent node information, mapping completion and efficiency can be greatly improved by merging and updating the frontier nodes. Also, we suggest appropriate graph search exploration methods for corridor and hall environments. The simulation demonstrates that the entire environment can be represented by well-distributed frontier nodes.
This paper introduces several mobile robots developed by using LEGO MIDSTORM for experimental studies of robotics engineering education. The first mobile robot is the line tracer robot that tracks a line, which is a prototype of wheel-driven mobile robots. Ultra violet sensors are used to detect and follow the line. The second robot system is a two-wheel balancing robot that is somewhat nonlinear and complex. For the robot to balance, a gyro sensor is used to detect a balancing angle and PD control is used. The last robot system is a combined system of a line tracer and a two-wheel balancing robot. Sensor filtering and control algorithms are tested through experimental studies.
This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.