검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Molten Salt Reactor (MSR) is considered one of the most suitable technology for micro mobile reactors due to its low operating pressure (3 ~ 5 atmospheres), which reduces weight and volume compared to pressurized water reactors (PWRs). Unlike PWRs, MSRs use molten salt as both fuel and coolant, enabling compact and transportable designs. This study outlines the conceptual design of a micro mobile MSR and establishes safety criteria for transient states. It proposes strategies for managing the primary loop, intermediate heat transfer system, and air-cooled Balance of Plant (BOP) while addressing thermal and structural constraints, such as maximum temperatures and molten salt freezing points. Control approaches for reactor output and BOP systems are analyzed, highlighting fast response and adaptability to frequent power changes. The study also compares fixed-speed and variable-speed pump operations and provides a framework for operational modes, from high-temperature standby to transport-ready conditions. These findings offer a foundation for efficient, safe, and flexible MSR deployment.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
        4,000원
        3.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The synthesis of a novel first stage GIC containing simultaneously lithium, potassium and barium through a solid–liquid reaction by molten salts method is described. Such a route has been largely developed in our laboratory for intercalation of metals into graphite. The interplanar distance of this quaternary compound reaches 950 pm and exhibits poly-layered intercalated sheets defined by X-ray measurements. The Li0.2K0.75Ba0.6C6 chemical formula of the compound is determined by ion beam analysis and this GIC is remarkably homogeneous. This GIC is the first poly-layered one containing barium.
        4,000원
        4.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-performance carbon materials were prepared via a one-step molten salt carbonization of tobacco waste used as electrode materials for supercapacitors. Carbon material prepared by carbonization for 3 h in molten CaCl2 at 850 °C exhibits hierarchically porous structure and ideal capacitive behavior. In a three-electrode configuration with 1 mol L− 1 H2SO4 aqueous solution, it delivers specific capacitance of 196.5 F g− 1 at 0.2 A g− 1, energy density of 27.2 Wh kg− 1 at 0.2 A g− 1, power density of 983.5 W kg− 1 at 2 A g− 1, and excellent cyclic stability with 94% capacitance retention after 5000 charge–discharge cycles at 1 A g− 1. Moreover, in a symmetrical two-electrode configuration with 6 mol L− 1 KOH aqueous solution, it delivers specific capacitance of 111.1 F g− 1 at 0.2 A g− 1, energy density of 3.8 Wh kg− 1 at 0.2 A g− 1, and power density of 482.0 W kg− 1 at 2 A g− 1. The relationship between hierarchically porous structure and capacitive performance is also discussed.
        4,500원
        5.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 °C. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.
        4,000원
        6.
        2016.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and HNO3 mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding BaF2, which reacted with the Zr ion involved in the waste acid; Ba2ZrF8 was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered Ba2ZrF8 because its melting temperature is 1031 oC. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding ZrF4 to Ba2ZrF8 to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.
        4,000원
        7.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-Li2O was investigated at 650˚C for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600< Inconel 601< Incoloy 800H< Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were Cr2O3 and NiFe2O4, In case of Inconel 690, a single layer of Cr2O3 was formed in the early stage of corrosion and an outer layer of NiFe2O4 and inner layer of Cr2O3 were formed with an increase of corrosion time. In the case of Incoloy 800H, Cr2O3 and FeCr2O4 were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.
        4,000원
        8.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrolytic reduction of a spent oxide fuel involves liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too crosive for typical structural materials. Therefore, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, the corrosion behavior of pyro-carbon made by CVD was investigated in a molten LiCl-Li2O salt under an oxidation atmosphere at 650˚C and 750˚C for 72 hours. Pyro-carbon showed no chemical reactions with the molten salt because of its low wettability between pyro-carbon and the molten salt. As a result of XRD analysis, pyro-carbon exposed to the molten salt showed pure graphite after corrosion tests. As a result of TGA, whereas the coated layer by CVD showed high anti-oxidation, the non-coated layer showed relatively low anti-oxidation. The stable phases in the reactions were C(S), Li2CO3(S), LiCl(l), Li2O at 650˚C and C(S), LiCl(l), Li2O(S) at 750˚C. Li2CO(S) was decomposed at 750˚C into Li2O(S) and CO2(g).
        4,000원
        14.
        1999.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Incoloy 800H, KSA (Kaeri Superalloy)-6, Inconel 600 및 Hastelloy C-276 합금의 용융염에서의 부식거동을 650~850˚C 온도범위에서 조사하였다. LiCl-Li2O혼합용융염에서의 부식은 Li2O에 의한 염기성 용해 기구에 의해 진행되며, 부식속도가 LiCl에서보다 훨씬 빠르게 나타났다. 혼합용융염 LiCl-Li2O에서는 Ni기 합금의 부식속도가 Fe기 합금보다 빠르고, Mo와 W의 함량이 높은 Hastelloy C-276이 가장 빠른 부식속도를 나타내었다. 용융염 LiCl에서는 LiCrO2의 단일 부식층이 형성되고, LiCl-Li2O 혼합용융염에서는 산화물과 Ni의 2상구조의 다공성 부식층이 형성되었다.
        4,000원
        16.
        1999.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        LiCl 및 LiCl/Li2O 용융염분위기에서 오스테나이트 스테인레스강, SUS 316L과 SUS 304L의 부식특성을 650­~850˚C 온도범위에서 조사하였다. SUS 316L과 304L의 부식층은 외부 Li(CrFe)O2와 내부 Cr2O3의 2층 구조를 형성하였다. LiCl 용융염중에서는 균일한 부식충이 형성되지만, LiCl/Li2O 혼합용융염중에서는 균일한 부식충 형성외에 업계부식이 발생되는 것을 알 수 있었다. 750˚C까지 온도 증가에 따른 부식속도의 증가속도는 느리고, 750˚C 이상에서는 부식속도가 급격히 증가하였다. 용융염분위기에서 SUS 316L은 SUS 304L에 비하여 부식속도가 느려셔 보다 좋은 내식성을 나타내였다.
        4,000원
        17.
        1998.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        용융탄산염 연료전지는 650˚C의 부식성이 강한 용융탄산염내에서 작동되므로, 분리판 재료로 사용되고 있는 316L 스테인레스강의 부식은 용융탄산염 연료전지의 수명을 단축시키는 주요한 원인이다. 특히 분리판 wet-seal부의 부식은 보다 심각한 것으로 알려져 있다. 이를 해결하기 위하여 AI계 합금이 피복재료로 사용되어 왔지만, 본 연구에서는 보다 우수한 분리판 wet-seal부의 내식 피복재료 개발을 위하여 피복재료인 NiAI 합금에 산화 활성화 원소인 yttrium을 최고 1.5 at%까지 첨가하였다. 650˚C의 용융탄산염내에서 yttium 함량에 따른 NiAI/Y 합금의 침지부식실험 및 분극실험을 통하여 내식성을 평가하고 부식 억제를 위해 가장 적절한 NiAI/Y 피복 재료의조성을 결정한 결과 최소의 yttrium 조성은 0.7 at% 임을 알 수 있었다.
        4,000원
        19.
        2025.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The efficient fabrication of uranium-based liquid fuels and the structural integrity of reactor materials are critical challenges for the deployment of chloride-based molten salt reactors (MSRs). As part of KAERI’s ongoing MSR development, this study investigates an optimized uranium chlorination process and a corrosion assessment of candidate structural materials under conditions more closely resembling actual reactor cores. To enhance process efficiency and scalability, metallic uranium was converted into uranium trihydride (UH3) via hydriding, achieving 34.1% efficiency. UH3 was chlorinated with ammonium chloride (NH4Cl), yielding uranium trichloride (UCl3) with a conversion rate over 98% and purity above 99%, as confirmed by ICP-OES. The UCl3 was used to fabricate various uranium-based liquid fuels for MSR applications. Simultaneously, the corrosion behavior of SS304, SS316, and Hastelloy-N was evaluated using a natural convection loop filled with a NaCl– MgCl2 eutectic salt mixture. The system operated for 500 hours at 500–580°C to replicate MSR conditions. Corrosion analysis revealed that SS304 suffered severe degradation, SS316 showed moderate resistance, and Hastelloy-N demonstrated superior stability, although some cold leg samples experienced mass gain due to corrosion product deposition. These findings provide key insights into optimizing liquid fuel synthesis and selecting corrosion-resistant materials for safe, long-term MSR operation.
        20.
        2025.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The corrosivity of molten salt presents a major challenge for the commercialization of molten salt reactors, which utilize molten salt as both fuel and coolant. To protect structural materials of molten salt reactors, minimizing moisture—the primary source of corrosion—is crucial, necessitating precise moisture concentration measurements. This study examines the role of an inert gas atmosphere in analyzing moisture in molten chloride salts. Four chloride salts with different hygroscopic properties (NaCl, KCl, MgCl2 and ZnCl2) were tested. Each was analyzed in three states: as-received and dried by heating for 6 and 12 hours. Karl Fischer titration was employed to measure the moisture concentrations in salts under both air and an argon-filled glove box. Results showed consistently lower and more stable moisture concentrations in the inert atmosphere, highlighting the necessity of an argon environment for accurate moisture analysis in molten salts.
        1 2 3 4 5