In Korea, most temporary storage facilities for spent nuclear fuel are nearing saturation. As an alternative to this, the 2nd basic plan for high-level radioactive waste management specified the operation plan of dry interim storage facility. Meanwhile, the NSSC No. 2021-19 stipulates that it is necessary to evaluate the possibility and potential effect of accident before operating interim storage facility. Therefore, this study analyzed the categories of accident scenarios that may occur in dry storage facility as part of prior research on this. We investigated the case of categorization of dry storage facility accident scenarios of IAEA, NRC, KAREI, and KINS. The IAEA presented accident scenarios that could occur in on-site dry storage facility operated with silo and cask method. NRC has classified accident scenarios in dry storage facility and estimated the probability of accidents for each. KAERI and KINS selected major accident scenarios and analyzed the processes for each, in preparation for the introduction of dry storage facility in Korea in the future. Overall, a total of 10 accident scenarios were considered, and the scenarios considered by each institution were different. Among 10 scenarios, cask drop and aircraft collision were included in the categorization of most institutions. The results of this study can be used as basic data for cataloging accidents subject to safety evaluation when introducing dry interim storage facility in Korea in the future.
Safeguards systems and measures are determined through diversion scenario analysis based on the facility design information submitted to the IAEA when a new nuclear facility is introduced. While the concept of safeguards-by-design (SBD), which considers the safeguards from the design phase for a facility operator to minimize unplanned changes or disruption to facility operations as well as for the IAEA to increase the efficiency and effectiveness in safeguards implementation, has been emphasized for more than a decade, there is no practical tool or guidance on how to apply it. In this study, we develop a diversion path analysis tool and introduce how to apply SBD using it. A diversion path analysis tool was developed based on the elements that constitute diversion and the algorithm generated based on the initial information of facility and nuclear material flow. The results of utilizing the analysis tool depending on a different level of facility information and the safeguards set-ups were compared through examples. Taking a typical light water reactor as an example, the test analyzed the automatic generation of dedicated routes, configuration of safeguards measures, and diversion path analysis. Through this, the application and limitations of the analysis tool are discussed, and ideas for utilization according to the SBD concept and necessary regulatory guidance are proposed. The results of this study are expected to be directly utilized to domestic nuclear control during the regulation process for a construction of new nuclear power systems, and furthermore, to enhance national credibility in the engagement with the IAEA for implementation of safeguards.
The decommissioning of Korea’s nuclear power facilities is expected to take place starting with the Kori Unit 1 followed by the Wolsong Unit 1. In Korea, since there is no experience of decommissioning, considerations of site selection for the waste treatment facilities and reasonable selection methods will be needed. Only when factors to be considered for construction are properly selected and their effects are properly analyzed, it will be possible to operate a treatment facility suitable for future decommissioning projects. Therefore, this study aims to derive factors to be considered for the site selection of treatment facilities and present a reasonable selection methodology through evaluation of these factors. In order to select a site for waste treatment facilities, three virtual locations were applied in this study: warehouse 1 to warehouse 3. Such a virtual warehouse could be regarded as a site for construction warehouses, material warehouses, annexed building sites, and parking lots in nuclear facilities. If the selection of preliminary sites was made in the draft, then it is necessary to select the influencing factors for these sites. The site of the treatment facility shall be suitable for the transfer of the waste from the place where the dismantling waste is generated to the treatment facility. In addition, in order for construction to take place, interference with existing facilities and safety should not be affected, and it should not be complicated or narrow during construction. Considering the foundation and accessibility, the construction of the facility should be economical, and the final dismantling of the facility should also be easy. In order to determine one final preferred plan with three hypothetical locations and five influencing factors, there will be complex aspects and it will be difficult to maintain consistency as the evaluation between each factor progresses. Therefore, we introduce the Analytic Hierarchical Process (AHP) methodology to perform pairwise comparison between factors to derive an optimal plan. One optimal plan was selected by evaluating the three virtual places and five factors of consideration presented in this study. Given the complexity and consistency of multiple influencing factors present and prioritizing them, AHP tools help users make decisions easier by providing simple and useful features. Above all, it will be most important to secure sufficient grounds for pairwise comparison between influencing factors and conduct an evaluation based on this.
Al-B4C neutron absorbers are currently widely used to maintain the subcriticality of both wet and dry storage facilities of spent nuclear fuel (SNF), thus long-term and high-temperature material integrity of the absorbers has to be guaranteed for the expected operation periods of those facilities. Surface corrosion solely has been the main issue for the absorber performance and safety; however, the possibility of irradiation-assisted degradation has been recently suggested from an investigation on Al-B4C surveillance coupons used in a Korean spent nuclear fuel pool (SFP). Larger radiation damage than expectation was speculated to be induced from 10B(n, α)7Li reactions, which emit about a MeV α-particles and Li ions. In this study, we experimentally emulated the radiation damage accumulated in an Al-B4C neutron absorber utilizing heavy-ion accelerator. The absorber specimens were irradiated with He ions at various estimated system temperatures for a model SNF storage facility (room temperature, 150, 270, and 400°C). Through the in-situ heated ion irradiation, three exponentially increasing level of radiation damages (0.01, 0.1, and 1 dpa or displacement per atom) were achieved to compare differential gas bubble formation at near surface of the absorber, which could cause premature absorber corrosion and subsequential 10B loss in an SNF storage system. An extremely high radiation damage (10 dpa), which is unlikely achievable during a dry storage period, was also emulated through high temperature irradiation (350°C) to further test the radiation resistance of the absorber, conservatively. The irradiated specimens were characterized using HR-TEM and the average size and number density of radiation-induced He bubbles were measured from the obtained bright field (BF) TEM micrographs. Measured helium bubble sizes tend to increase with increasing system (or irradiation) temperature while decrease in their number density. Helium bubbles were found from even the lowest radiation damage specimens (0.01 dpa). Bubble coalescence was significant at grain boundaries and the irradiated specimen morphology was particularly similar with the bubble morphology observed at the interface between aluminum alloy matrix and B4C particle of the surveillance coupons. These characterized irradiated specimens will be used for the corrosion test with high-temperature humid gas to further study the irradiation-assisted degradation mechanism of the absorber in dry SNF storage system.
The domestic representative nuclear fuel cycle facilities are post-irradiation examination facility (PIEF) and Irradiated Examination Facility (IMEF) at KAERI. They have regularly operated since 1991 and 1993, respectively. Due to the long period of use, the facilities are ageing, and maintenance costs are increasing every year. The maintenance methods have mainly been breakdown maintenance (BM) and partially preventive maintenance (PM). They involve replacing components that have problems through periodic inspections by on-site inspectors. However, these methods are not only uncertain in terms of replacement cycles due to worker’s deviation on the inspection results, but also make it difficult to respond accidents developed through failures on the critical equipment that confines radioactive material. Therefore, an advanced operation and maintenance studied in 2022 through all of nuclear facilities operated at KAERI. Advancement strategy in four categories (safety, sustainability, performance, innovativeness) was analyzed and their priorities according to a facility environment were determined so a roadmap for advanced operation and maintenance could be developed. The safety and sustainability are higher importance than the performance and innovativeness because facilities at KAERI has an emphasis on research and development rather than industrial production. Thus, strategy for advancement has focused even more on strengthening the safety and sustainability. To enhance safety, it has been identified that immediate improvement of aged structures, systems, and components (SSCs) through large-scale replacement is necessary, while consideration of implementing an ageing management program (AMP) in the medium to long term is also required. Facility sustainability requires strengthening operation expertise through training, education, and cultivation of specialized personnel for each system, and addressing outstanding regulatory issues such as approval of radiation environment report on the nuclear fuel processing facilities and improvement work according to fire hazard analysis. One of the safety enhancement methods, AMP, is a new maintenance approach that has not been previously applied, so it had to be thoroughly examined. In this study, an analysis was conducted on the procedure and method for introducing an AMP. An AMP for nuclear fuel cycle facilities was developed by analyzing the AMP applied to the BR2 research reactor in Belgium and modifying it for application to nuclear fuel cycle facilities. The ageing management for BR2 has the objective to maintain safety, availability and cost efficiency and three-step process. The first step is the classification of SSCs into four classes to apply graded approach. Secondly, ageing risk is assessed to identify critical failure modes, their frequency and precursors. Final step involves defining measures to reduce the ageing risk to an acceptable level in order to integrate the physical and economic aspects of ageing into a strategy for inspection, repair, and replacement. Similar approach was applied to the nuclear fuel cycle facility. Firstly, the SSCs of nuclear fuel cycle facilities have been classified according to their safety and quality classifications, as well as whether they are part of the confinement boundary. The SSCs involved in the confinement boundary were given more weight in the classification process, even if they are not classified as safety-class. A risk index for ageing was introduced to determine which prevention and mitigation measure should be chosen. By multiplying the health index and the impact index, the ageing risk matrix provides a numerical score that represents guidance on the prevention and mitigation of ageing effect. The health index is determined by combining the likelihood of failure and engineering evaluation of the current condition of SSCs, whereas the impact index is calculated by taking into account the severity of consequences and the duration of downtime resulting from a failure. This ageing management has to be thoroughly reviewed and modified to suit each facility before being applied to nuclear fuel cycle facilities.
Radiological characterization is important in decommissioning and dismantling of nuclear facilities, in order to assess the radioactivity concentration, classify the wastes, and secure workers’ safety. The Some components such as Reactor Pressure Vessel (RPV) in nuclear facilities has dose rate higher than Sv/hr, thus in-situ gamma spectroscopy systems suffer from a very high count rate which causes energy resolution degradation, photo-peak shift, and count loss by pile-up and dead-time. The system must be operated in a very high count rate, in order to measure spectra precisely and to quantify radionuclide contents. In order to apply in-situ measurement in high radiation dose rate environment, the sensor, front-end electronics, and data acquisition (DAQ) should be carefully selected and designed as well as precise design of collimators and radiation shield. In this paper, the components of the detector system were selected and performance was evaluated in a high count rate before design the collimator and shield. A LaBr3 coupled with a PMT having short decay time constant (16 nsec) was selected for high count rate application, and two different amplifiers (a conventional charge sensitive preamplifier with 50 usec decay time constant, and wide-band voltage amplifier) were tested. As DAQs, DT5781 (14 bit, 100 MS/s, CAEN) of Pulse Height Analysis (PHA) which is conventionally used signal processing method in the gamma spectroscopy, and DT5730 (14 bit, 500MS/s, CAEN) of Pulse Shape Discrimination (PSD) which is similar to Charge to Digital Convertor (QDC) were used. The number of photons incident to the detector was varied by changing the detector-source distance with Certificate Radiation Material (CRM), and compared to the output count rate. The count rate capability, and energy resolution with different amplifier and DAQ was evaluated. Additionally, the performance of DAQs in extremely high count rate was evaluated with signal data generated by the emulator which can simulate the detector signal waveforms fed into the DAQ based on the measured spectrum.
During the decommissioning of nuclear facilities, 3D digital model that precisely describes the work environment can expedite the accomplishment of the work. Thus, the workers’ exposure to radiation is minimized and the safety risk to the workers is reduced, while precluding inadvertent effects on the environment. However, it is common that the 3D model does not exist for legacy nuclear facilities as most of the initial design drawings are 2D drawings and even some of the 2D drawings are missing. Even in the case that all of the 2D drawings are intact, these initial design drawings need to be updated using asbuilt data because facilities get modified through years of operation. In those cases, 3D scanning can be a good option to quickly and accurately generate a structure’s actual 3D geometric information. 3D scanning is a technique used to capture the shape of an object in the form of point cloud. Point cloud is a collection of large number of points on the external surfaces of objects measured by 3D scanners. The conversion of point cloud to 3D digital model is a labor-intensive process as a human worker needs to recognize objects in the point cloud and convert the objects into 3D model, even though some of the conversion process can be automated by using commercial software packages. With the aim of full automation of scan-to-3D-model process, deep learning techniques that take point cloud as input and generate corresponding 3D model have been studies recently. This paper introduces an efficient scan simulation method. The simulator generates synthetic point cloud data used to train deep learning models for classifying reactor parts in robotic nuclear decommissioning system. The simulator is built by implementing a ray-casting mechanism using a python library called ‘Pycaster’. In order to improve the speed of simulation, multiprocessing is applied. This paper describes the ray casting simulation mechanism and compares the in-house scan simulator with an open source sensor simulation package called Blensor.
There are various types of level gauging method such as using float, differential pressure, hypersonic, displacement and so on. In this study, among them, the method utilizing the differential pressure was reviewed. The strengths include: the differential pressure type level gauge can measure the level without direct contact of the sensor with media. That is to say, the level can be measured even if the sensor is far away from the tank. And regardless of the size of the tank, the level can be measured if the pneumatic pipes are installed. The weaknesses include: the sensor needs intermedium to recognize the level. The intermedium utilizes a fluid, which is compressed air. It is difficult to handle that compressed air has the properties of a gas. And to make compressed air needs compressor, tank and pneumatic pipes. So if you have many tanks, you need to install exponentially the pneumatic pipes. As well, level measurement range is limited to the points where the pneumatic pipes of the tank is installed. And if a compressed air that supplies to the sensor leaks, uncertainty will increase. A compressed air is colorless and odorless, so it’s difficult to pinpoint the leak. Finally, events like cracks and clogging can cause inaccurate measurement. Rather than using only differential pressure, it is better to use another measurement method according to the situation of the facility.
In Korea, research on the development of safety case, including the safety assessment of disposal facility for the spent nuclear fuel, is being conducted for long-term management planning. The safety assessment procedure on disposal facility for the spent nuclear fuel heavily involves creating scenarios in which radioactive materials from the repository reach the human biosphere by combining Features, Events and Processes (FEP) that describe processes or events occurring around the disposal area. Meanwhile, the general guidelines provided by the IAEA or top-tier regulatory requirements addressed by each country do not mention detailed methods of ‘how to develop scenarios by combining individual FEPs’. For this reason, the overall frameworks of developing scenarios are almost similar, but their details are quite different depending on situation. Therefore, in order to follow up and clearly analyze the methods of how to develop scenarios, it is necessary to understand and compare case studies performed by each institution. In the previous companion paper entitled ‘Research Status and Trends’, the characteristics and advantages/disadvantages of representative scenario development methods were described. In this paper, which is a next series of the companion papers, we investigate and review with a focus on details of scenario development methods officially documented. In particular, we summarize some cases for the most commonly utilized methods, which are categorized as the ‘systematic method’, and this method is addressed by Process Influence Diagram (PID) and Rock Engineering System (RES). The lessons-learned and insight of these approaches can be used to develop the scenarios for enhanced Korean disposal facility for the spent nuclear fuel in the future.
Kori unit 1, Korea’s first light-water nuclear power plant, was permanently shut down in June 2017. The operator, Korea Hydro & Nuclear Power Co. (KHNP), submitted a final dismantling plan for Kori unit 1 to the Nuclear Safety and Security Commission (NSSC) in May 2021. Pursuant to this procedure, the NSSC is preparing regulations for the decommissioning stage of large nuclear facilities for the first time in the Republic of Korea. The Korea Institute of Nuclear Non-proliferation and Control (KINAC) is also considering applying regulations on safeguards. Moreover, the International Atomic Energy Agency (IAEA) developed the “International Safeguards Guidelines for Nuclear Facilities under Decommissioning” in 2021. The guidelines describe the detailed application of safeguards measures to be considered when decommissioning nuclear facilities, dismantling essential equipment, and providing relevant information to the IAEA, as well as the scope of IAEA inspections. In addition, Dr. R. Bari of the Brookhaven National Laboratory (BNL) proposed the Facility Safeguardability Assessment (FSA), a methodology that reflects facility characteristics from the design stage to ensure that designers, national regulators, and the IAEA communicate smoothly regarding safeguards measures. The FSA process derives expected problems with safeguards measures considering new nuclear facilities by analyzing the gap of safeguards measures applied to existing similar nuclear facilities. This study uses the existing FSA methodology to predict problems related to safeguards measures when decommissioning nuclear facilities and to analyze deviations from safeguards measure requirements according to IAEA guidelines. To this end, the reference facility is set as an operating pressurized light water reactor; the issues with the safeguards measures are summarized using the FSA Process; and a draft safeguards concept for nuclear facilities under decommissioning is designed. Furthermore, validity is confirmed through a simple analysis of the diversion path, and implications and lessons are derived. Through this, it is possible to anticipate new safeguards measures to be applied when decommissioning nuclear facilities in the Republic of Korea and review problems and considerations in advance.
Radiological characterization, one of the key factors for any successful decommissioning project for a nuclear facility, is defined as a systematic identification of the types, quantities, forms, and locations of radioactive contamination within a facility. This characterization is an essential early step in the development of a decommissioning plan, in particular during transition period after permanent shutdown of the facility, and also to be used for classification of decommissioned radioactive wastes so that their disposal criteria can be met. Therefore, the characterization should be well planned and performed. In the transition period, the characterization information developed during the operational phase is usually reexamined with respect to the applied assumptions, the actual status of the facility after shutdown, the accuracy of the required measurements and changes in its radiological properties to support the development of the final decommissioning plan. Based on some national (Korean, USA’s and Japanese) laws including the related regulations, and some related documents published by OECD/NEA, IAEA, and ASTM, key elements of radiological characterization, which should be developed in the transition period, could be proposed as the followings. The key elements might be an operational history including facility operation history and contamination by events and/or accidents, radiological inventory of the facility and site area, characterization survey including in-situ survey and/or sampling and analyses, radiological mapping (which is able to identify radiological contamination levels of SSCs, and the facility area and, if contamination may be suspected, the surroundings) with tabulating, residual radioactivity (or derived concentration guideline levels) of selected major radionuclides for remediation of the site, (retainable and retrievable) recording, and quality control and quality assurance. In review process of the operational history, interviews of current or former long-tenured knowledgeable employees of the facility should be conducted to identify conditions that may have been missing from the records.
The remote dismantling system proposed in this paper is a system that performs the actual dismantling process using the process and program predefined in the digital manufacturing system. The key to the successful applying this remote dismantling system is how to overcome the problem of the difference between the digital mockup and the actual dismantling site. In the case of nuclear facility decommissioning, compensation between the virtual world and the real world is difficult due to harsh environments such as unsophisticated dismantling sites, radiation, and underwater, while offline programming can be proposed as a solution for other industries due to its sophisticated and controllable environment. In this paper, the problem caused by the difference in the digital mockup is overcome through three steps of acquisition of 3D point cloud in radiation and underwater environment, refraction correction, and 3D registration. The 3D point cloud is acquired with a 3D scanner originally developed in our laboratory to achieve 1 kGy of radiation resistance and water resistance. Refraction correction processes the 3D point cloud acquired underwater so that the processed 3D point cloud represents the actual position of the scanned object. 3D registration creates a transformation matrix that can transform a digital mockup of the virtual world into the actual location of a scanned object at the dismantling site. The proposed remote dismantling system is verified through various cutting experiments. In the experiments, the cutting test object has a shape similar to the reactor upper internals and is made of the same material as the reactor upper internals. The 105 successful experiments demonstrate that the proposed remote dismantling system successfully solved the key problem presented in this paper.