Hydrogen peroxide (H2O2) is widely used in bleaching treatments in the pulp and paper industry, in wastewater treatment, and as a food additive. However, H2O2 solutions are unstable and decompose slowly when subjected to external factors such as light, high temperatures, or metal compounds. Therefore, a simple and reliable method to measure the concentration of H2O2 is required for its proper use in various applications. We determined the concentration of an H2O2 solution by measurement at a single wavelength (249 nm) without any reagents or complex analytical procedures. In the present work, the measurable concentration of H2O2 was as low as 0.015 wt% (4.41 mM) and as high as 0.300 wt% (88.2 mM), with high linearity (99.99% at 249 nm) between the concentration of H2O2 and the optical density (OD) values. In addition, the method could be used to measure the concentration of H2O2 in a peracetic acid solution without interference from acetic acid and peracetate ion.
Pt/C catalysts were prepared using black carbon (CB), and evaluated for their potential application as a catalyst of liquid-phase catalystic exchange for tritium treatment. CB was treated with 10% H2O2 solution for 0 and 2 hours at 105°C, Ethylene glycol and 40wt% Pt were added to the dried treated sample to prepare a Pt/C catalyst. The physical and chemical properties of the prepared catalysts were evaluated by BET, XRD, elemental analysis (EA), and TEM analyses. As a result of BET analysis, the surface area of CB without 10% H2O2 was 237.2 m2·g-1, and after treatment with 10% H2O2, it decreased to 181.2 m2·g-1 for 2 hours. However, the internal surface area increased, indicating the possibility that more Pt could be distributed inside the CB treated with 10% H2O2. In the XRD analysis results, the presence of Pt was confirmed by observing the Pt peak in the prepared Pt/C catalyst, and it was also observed through TEM analysis that Pt was evenly distributed within the CB. The elemental analysis (EA) results showed that the ratio of S and N decreased and the ratio of O increased with increasing 10% H2O2 treatment time. The H2O2 treated carbon supported Pt catalysts and polytetrafluoroethylene were then loaded together on a foamed nickel carrier to obtain hydrophobic catalysts. Our hydrophobic Pt catalyst using H2O2 treated black carbon are expected to be usefully used in the tritium treatment system.
This study evaluated a potential sterilization process that uses calcium hypochlorite (Ca(ClO)2) as a disinfectant and hydrogen peroxide (H2O2) as a neutralizing agent for monoculture processes of microalgae (Nannochloropsis oculata). The results showed that no contaminants (prokaryote) were present when the Ca(ClO)2 concentration was greater than 0.010%. The use of an equivalent amount of H2O2 completely neutralized Ca(ClO)2 and had an additional bactericidal effect because of the formation of singlet oxygen. No substantial difference was observed in the biomass accumulation and chlorophyll contents compared to those in cultures sterilized using conventional physical methods such as autoclaving. Therefore, chemical sterilization using Ca(ClO)2 and H2O2 has an excellent economic advantage, and we expect the proposed ecofriendly chemical sterilization method to become a critical culture technology for microalgae-related industrialization.
산화적 스트레스는 세포 및 조직 손상을 통해 피부의 탄력 및 보습 기능 저하, 피부 노화 촉진 을 비롯한 다양한 피부질환을 일으킨다. 본 연구의 목적은 인간 피부각질세포 (HaCaT keratinocyte)에서 산화적 스트레스에 대한 붉은 토끼풀 추출물의 효능을 검토하여, 피부에 효과적으로 사용할 수 있는 기능 성 소재로서의 활용 여부를 확인하고자 하였다. 본 연구에서는 붉은 토끼풀 추출물이 인간 피부각질세포에 서 산화적 스트레스에 따른 세포사를 억제시키는 것을 확인하여, 이를 조절하는 보호기전을 규명하였다. 이는 붉은 토끼풀 추출물이 Caspase-3 비활성, 세포사 촉진단백질 Bax 발현 억제, 세포생존 촉진단백질 Bcl-2 발현 증가 및 MAPK 신호전달계 단백질의 인산화 억제를 통해 H2O2에 의해 유도된 산화적 스트레 스를 보호할 수 있다는 것을 확인하였다. 따라서 붉은 토끼풀 추출물은 피부의 산화적 손상을 감소시키는 유용한 소재로 평가되며, 이는 피부보호 및 미용을 위한 다양한 제품 및 산업에 활용 가능성이 높은 것으로 판단된다.
본 연구에서는 O2O 화장품 배달 서비스 앱의 e-서비스품질이 만족과 충성도에 미치는 영향을 알아보고자 하였다. 이를 위해 설문지 총 210부를 수집하여 통계패키지 SPSS 25.0으로 빈도분석, 탐색적 요인분석, 신뢰도 분석, 상관관계분석, 회귀분석을 실시하였으며 주요 결과는 다음과 같다. O2O 화장품 배 달 서비스 앱 e-서비스품질의 구성요소인 효율성, 주문이행성, 시스템이용가능성, 프라이버시 모두 만족과 충성도에 유의한 영향을 미치는 것으로 나타났다. 또한, 만족 역시 충성도에 유의한 영향을 미치는 것으로 나타났다. O2O 화장품 배달 서비스 앱을 이용하는 소비자를 증가시키기 위해서는 만족과 충성도에 가장 큰 영향을 미치는 시스템이용가능성과 효율성을 높여야 한다. 이를 위해 소비자가 O2O 화장품 배달 서비 스 앱을 이용하는 동안 빠른 접속과 끊김이 없는 쾌적한 환경을 제공해야 하고 효율적으로 사용할 수 있도 록 시스템을 구축해야 한다.
Cerium oxide decorated on nickel hydroxide anchored on reduced graphene oxide (Ce-Ni(OH)2/rGO) composite with hexagonal structures were synthesized by facile hydrothermal method. Fourier transform infrared spectroscopy (FT-IR), highresolution transmission electron microscopy with selected area diffraction (HRTEM-SAED), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer– Emmett–Teller (BET) surface area analysis and electrochemical technology were used to characterize the composite. Due to its unique two-dimensional structures and synergistic effect among Ce2O3, Ni(OH)2 and rGO components indicated twodimensional hexagonal nano Ce-Ni(OH)2/rGO composite is promising electrode material for improved electrochemical H2O2 sensing application. From 50 to 800 μM, the H2O2 concentration was linearly proportional to the oxidation current, with a lower detection of limit of 10.5 μM (S/N = 3). The sensor has a higher sensitivity of 0.625 μA μM−1 cm− 2. In addition, the sensor demonstrated high selectivity, repeatability and stability. These findings proved the viability of the synthetic method and the potential of the composites as a H2O2 sensing option.
높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표 면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사 용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이 었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.
In this study, soybean oil, which is used in a large variety of processed foods, is used as a carbon source. Soybean oil is successfully coated onto the surface of LiNi1/ 3Co1/3Mn1/3O2 (NCM) by a simple method. The physical and electrochemical properties of NCM/C hybrid materials are determined. As a result, a 5 nm thickness carbon coating layer is formed on the surface of the NCM, resulting in improved capability and cyclic performance in the battery. The NCM/C battery shows an initial discharge capacity of 159 mAh g−1 and 95% capacity retention after 100 cycles (a discharge capacity of 120 mAh g−1 and 94% retention are observed after 100 cycles for the NCM cathode).
다층 구조를 가진 5A 제올라이트를 탄소 분자체 분리막에 첨가한 복합막을 제조하고 질소/산소의 분리 특성을 평가하였다. 제올라이트의 첨가는 선택도에는 미세한 영향을 주지만 투과도를 크게 증가시키는 방법으로 전체적인 탄소막의 질소/산소의 분리 성능을 상승시켰다. 특히 메조포어를 함유한 다층구조의 제올라이트 첨가제는 분리막의 투과도를 보다 효율적으로 상승시켜 아주 우수한 분리 성능에 도달하였다. 이 연구의 결과는 저렴한 탄소막 전구체와 제올라이트 소재를 활용하 고도 고성능의 질소/산소 분리막을 손쉽게 제조할 수 있다는 것을 제시한다.
Recent discoveries of ferroelectric properties in ultrathin doped hafnium oxide (HfO2) have led to the expectation that HfO2 could overcome the shortcomings of perovskite materials and be applied to electron devices such as Fe-Random access memory (RAM), ferroelectric tunnel junction (FTJ) and negative capacitance field effect transistor (NC-FET) device. As research on hafnium oxide ferroelectrics accelerates, several models to analyze the polarization switching characteristics of hafnium oxide ferroelectrics have been proposed from the domain or energy point of view. However, there is still a lack of in-depth consideration of models that can fully express the polarization switching properties of ferroelectrics. In this paper, a Zr-doped HfO2 thin film based metal-ferroelectric-metal (MFM) capacitor was implemented and the polarization switching dynamics, along with the ferroelectric characteristics, of the device were analyzed. In addition, a study was conducted to propose an applicable model of HfO2-based MFM capacitors by applying various ferroelectric switching characteristics models.
This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.
Green BaSi2O2N2:0.02Eu2+ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of Eu3+ into Eu2+ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of BaCO3 at 900 oC and phase transitions at 1,300 oC and 1,400 oC. By structural analysis, it is confirmed that single phase [BaSi2O2N2] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the 4f65d1→4f7 transition of Eu2+ ion. An LED package (chip size 5.6 x 3.0 mm) is fabricated with a mixture of our green BaSi2O2N2, and yellow Y3Al5O12 and red Sr2Si5N8 phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.
Layered LiNi0.83Co0.11Mn0.06O2 cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, nondoping pristine LiNi0.83Co0.11Mn0.06O2 cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical α-NaFeO2-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dualdoped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).
Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of O2 and O3 onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially O3 molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.
본 연구는 유칼립투스(Eucalyptus pulverulenta) 잎에서 치료적 효과가 큰 α-pinene과 1,8-cineole 함량증가에 미치는 H2O2와 SA 처리의 영향에 대해 알아보기 위하여 수행하였다. 유칼립투스가지를 H2O2 수용액(0.3, 0.5, 1%)과 SA 수용액(0.1, 1mM)에 침지하거나 잎에 엽면살포(0.1mM SA, 1% H2O2)한 뒤 시간흐름(0, 0.5, 1, 2, 4시간)에 따른 α-pinene과 1,8-cineole의 함량변화를 분석한 결과, 침지처리에서 유칼립투스 잎의 α-pinene 함량(mg・L-1)은 0.1mM SA에 2시간 침지 후 1.62에서 5.48로 크게 증가하였으며(238.27%, p=0.012), 1,8-cineole 함량(mg・L-1)은 1mM SA에 4시간 침지 후 44.44에서 78.96으로 크게 증가하였다(77.66%, p=0.026). 살포처리에서는 0.1mM SA를 엽면살포 30분 후 α-pinene 함량(mg・L-1)은 1.62에서 3.91로(141.36%, p=0.007), 1,8-cineole 함량(mg・L-1)은 44.44에서 87.91로 증가하였다(97.82%, p=0.001). α-pinene과 1,8-cineole 모두 살포처리 30분 뒤 크게 증가하여, 엽면살포가 짧은 시간내에 방향화합물을 증가시키는데 침지처리보다 효과적이었으며, H2O2와 SA 처리는 α-pinene과 1,8-cineole의 함량증가에 유의한 영향이 있었다. 또한, SA의 처리가 H2O2보다 방향화합물 함량증가에 더 효과적이었으며, 유칼립투스 가지의 경우 원예치료 2시간 전에 0.1mM SA 용액에 담그거나 30분 전에 잎에 살포하면 monoterpene의 유칼립투스 함량이 크게 증가되었다.
We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.