검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 180

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To suppress mold generation of yujacheong, Penicillium chrysogenum LB31 was cultured, and spores were harvested and put into yujacheong. Antioxidant activity, useful ingredients, mold size and incidence were investigated while storing yujacheong for 30 days, after sterilization with different methods (nontreatment, ozone gas emission, heating after ozone gas emission and heating). The results showed that the content of narirutin, naringin, hesperidin, or neohesperidin, which are functional components of yuzu, increased as the storage period increased in all the treatment units. In addition, mold generation was not observed until the 15th day in the heat treatment group after ozone gas emission. As the treatment group emitted ozone gas. molds of 34.8 and 112 mm2 in size were observed on the 30th day. These results suggested that ozone sterilization can prevent microbial contamination, further extending the shelf life of yuzacheong and maintaining a fresh state.
        4,000원
        2.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the effects of sterilization, storage period and washing yuzu, according to the washing method, during the storage period. The results showed that the fungus size increased as the storage period increased, and no mold occurred in the yuzu washed with ozone water until 20 days. After 30 days of storage, a mold of 124.1±13.9 mm2 was observed. The no-treatment sample had a fungus of 814.5±72.8 mm2 in size on day 0 and the fungus the largest fungus was 6,362±636.7 mm2 on day 30. In the case of water treatment, the fungus was 286.4±31.5~4,836.4±484.6 mm2 in size. The results of the study confirmed that washing yuzu with ozone water has a sterilizing effect.
        4,000원
        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to investigate the effects of water molecules on ozone oxidation of acetaldehyde using a manganese oxide catalyst at room temperature. The catalytic ozone oxidation was conducted at different relative humidity (RH) conditions of 0%, 50%, and 80%. As the RH increased, both ozone and acetaldehyde removal efficiencies dropped due to competitive adsorption on the surface of the catalyst. At the highest RH of 80%, the oxidation reaction was severely retarded, and oxidation by-products such as acetic acid were formed and adsorbed on the surface. After the ozone oxidation of acetaldehyde, the regeneration of the catalyst using ozone alone was tested, and the further oxidation of accumulated organic compounds was investigated under the RH conditions of 0%, 50%, and 80%. When the highest relative humidity was introduced in the regeneration step, the ozonation reaction with the by-products adsorbed on the catalyst surface decreased due to the competitive reaction with water molecules. These findings revealed that, only when relative humidity was low to minimize the formation of by-products, the ozone oxidation of acetaldehyde using the manganese oxide catalyst at room temperature can be feasible as an effective control method.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to investigate the proper mixing treatment concentration of ozone (O3) and sucrose to preserve and extend the vase life of the cut rose flowers ‘Dominica’. The vase solution was prepared using tap water, 3% sucrose, ozone 5.5 mg L-1, and 3% sucrose with ozone 5.5 mg L-1. The vase life was the highest in the tap water and ozone treatments at 16.3 and 16.1 days, respectively. The vase life of ozone with sucrose treatment was 6.9 days, which was 9.4 days lower than that of the control. Compared to a single treatment, the vase life termination symptoms for ozone with sucrose treatment decreased petal wilting and increased bent necks. Relative fresh weight and vase solution uptake increased up to 4 days after treatment and decreased from 2 days before vase life termination. The rate of change in petal color was high in L*, a*, and b* for the sucrose treatment than after harvest, and low for the ozone treatments. The maximum relative flower size increase rates after treatment were 195% in the control, 186% in the sucrose treatment, 171% in the ozone treatment, and 155% in the ozone with sucrose treatment.
        4,000원
        7.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 광화학 대기질 모델인 CMAQ을 활용해 화력발전소 배출량 제거에 따른 O3 농도의 변화 특성을 분석하였다. 하동 화력발전소를 대상으로 주변 지역의 O3 농도 변화에 대한 발전소 배출량의 영향을 조사하기 위해 하 동 화력발전소의 배출량 제거 전과 후의 CMAQ 수치 모의를 수행하였다. 수치 모의 결과 O3의 주요 전구 물질인 NOx (-18.87%)와 VOCs (-11.27%)의 농도가 감소한 반면에 O3 (25.24%)의 농도는 증가한 것으로 나타났다. 화력발전소 배출량 제거로 인한 NO와 O3 농도의 상대적인 변화를 비교해 본 결과 높은 음의 상관관계(R= -0.72)를 나타내는 것이 확인되었다. 이러한 결과는 O3의 농도 증가가 NO 농도 감소로 인한 O3의 적정 효과 완화로 설명 될 수 있음을 의미한 다. 해당 지역의 O3의 농도 증가가 NO의 농도 감소에 주로 영향을 받은 이유는 해당 지역이 VOC-limited (i.e., NOxsaturated) 지역이기 때문으로 분석되었다. 이러한 결과는 특정 지역의 O3의 농도가 단순히 배출량의 증감에 따라 비례하게 나타나지 않을 수 있다는 것을 암시한다. 따라서 화력발전소 배출량 저감 조치로 인한 대기 중 O3 농도 개선 효과를 정확히 예측 및 평가하기 위해서는 지역 별 O3의 생성 및 소멸 기작에 대한 심도 있는 이해가 필요하다.
        4,800원
        8.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        9.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60 to 80 in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly ecient power system designed for the speci c orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two di erent con gurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.
        4,000원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
        4,200원
        13.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBIGGS에서는 대기 중의 미량의 오존이 고분자 분리막의 손상을 가져오기 때문에 전단에 오존 제거장치를 설치하여 분리막에 전해지는 기체에서 오존의 농도를 감소시켜 분리막의 손상을 막고 있다. 본 연구에서는 OBIGGS용 기체 분리막을 이용하여 오존 노출시간에 따른 인장강도와 기체투과특성을 평가하여 오존 노출환경과 투과특성의 관계를 확인하였다. 폴리이미드계와 폴리설폰계 두 종류의 중공사 분리막을 이용하였고, 6.37 cm2의 유효 막 면적을 가지는 중공사 모듈을 제조하여 사용하였다. 오존 챔버를 이용하여 오존의 농도를 2-3 ppm으로 유지하였으며, 챔버 내의 기체를 펌프를 이용하여 모듈내로 지속적으로 공급하였으며, 오존 노출시간에 따라서 기체투과특성과 인장강도를 각각 평가하였다. 그 결과 폴리이미드계 중공사 분리막은 투과도에서 20%의 감소만 나타났을 뿐, 선택도와 인장강도에서 다른 큰 변화를 나타내지 않고 균일하게 유지되는 것을 확인하였다. 하지만 폴리설폰계 중공사 분리막을 사용하였을 때는 투과도가 80% 이상 감소하였고, 인장강도는 70% 이상 감소하는 결과를 나타내었다.
        4,000원
        14.
        2018.11 구독 인증기관·개인회원 무료
        In this study, we prepared thin composite membranes in which a support layer and a selective layer are covalently bonded in a simple method. The graft polymerization was carried out using UV/Ozone on a commercial Poly(sulfone) ultrafiltration membrane with Poly((ethylene glycol) methyl ether methacrylate) (PEGMA) possessing CO2 affinity. As a result, nano-pores on the surface membrane were covered with PEGMA. The covalent bonding of the composite membranes has the advantage of improving stability and weatherability. In addition, due to the thin selective layer formed by the graft polymerization, highly gas permeation characteristics are exhibited, and efficient process performance can be expected. The final composite membranes were investigated in terms of their chemical structures and elements, and gas permeation properties.
        15.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 소와 돼지 식육부산물의 위생처리를 위한 볼텍스 튜브를 이용한 오존수 제조 장치를 개발 하기 위해 수행되었다. 오존가스발생에 있어서 가장 중요한 인자는 원료공기의 온도이며, 위생처리를 위한 오존수 내 오존농도에 크게 영향을 미친다. 이러한 이유 때문에 오존발생기로 유입되는 원료공기의 온도를 낮추기 위해 볼텍스 튜브가 이용되었다. 성능평가의 결과에 의하면, 공기압축기의 배출공기 압력 3~5bar, 볼텍스 튜브의 냉기비율 40~80%와 냉각공기의 압력 0.0~0.4bar가 28.2℃의 주변 공기 온도 하에서 볼텍스 튜브의 냉각공기의 온도에 교호적으로 작용하는 것으로 나타났으며(p<0.05), 최적 조건은 공기압축기의 배출공기 압력 4bar, 볼텍스 튜브의 냉기비율 40%, 냉각공기의 압력 0.3bar이었다. 최적조건과 주변 공기온도 35℃ 하에서 볼텍스 튜브를 이용한 오존수 제조 장치의 성능을 평가한 결과에 의하면, 오존수 내 오존농도가 0.43ppm 이상이었다. 따라서 볼텍스 튜브를 이용한 오존수 제조 장치의 성능이 우수하여 여름철 악조건 하에서도 이용이 가능한 것으로 판단된다.
        4,000원
        16.
        2018.05 구독 인증기관·개인회원 무료
        In this study, we prepared thin composite membranes in which a support layer and a selective layer are covalently bonded in a simple method. The graft polymerization was carried out using UV/Ozone on a commercial Poly(sulfone) (PSf) ultrafiltration membrane with Poly((ethylene glycol) methyl ether methacrylate) (PEGMA) possessing CO2affinity. As a result, nano-pores on the surface membrane were covered with PEGMA. The covalent bonding of the composite membranes has the advantage of improving stability. In addition, due to the thin selective layer formed by the graft polymerization, highly gas permeation characteristics are exhibited, and efficient process performance can be expected. The final composite membranes were investigated in terms of their chemical structures and elements, morphology, and gas permeation properties.
        17.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Climate change is believed to increase the amount of dissolved organic matter in surface water, as a result of the release of bulk organic matter, which make difficult to achieve a high quality of drinking water via conventional water treatment techniques. Therefore, the natural water treatment techniques, such as managed aquifer recharge (MAR), can be proposed as a alternative method to improve water quality greatly. Removal of bulk organic matter using managed aquifer recharge system is mainly achieved by biodegradation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) can be used as water quality indicators for biological stability of drinking water. In this study, we compared the change of BDOC and AOC with respect to pretreatment methods (i.e., ozone or peroxone). The oxidative pretreatment can transform the recalcitrant organic matter into readily biodegradable one (i.e., BDOC and AOC). We also investigated the differences of organic matter characteristics between BDOC and AOC. We observed the decreases in dissolved organic carbon (DOC) and the tryptophan-like fluorescence intensities. Liquid chromatographic - organic carbon detection (LC-OCD) analysis also showed the reduction of the low molecular weight (LMW) fraction (15% removed, less than 500 Da), which is known to be easily biodegradable, and the biopolymers, high molecular weight fractions (66%). Therefore, BDOC consists of a broad range of organic matter characteristics with respect to molecular weight. In AOC, low molecular weight organic matter and biopolymers fraction was reduced by 11 and 6%, respectively. It confirmed that biodegradation by microorganisms as the main removal mechanism in AOC, while BDOC has biodegradation by microorganism as well as the sorption effects from the sand. O3 and O3 + H2O2 were compared with respect to biological stability and dissolved organic matter characteristics. BDOC and AOC were determined to be about 1.9 times for O3 and about 1.4 times for O3 + H2O2. It was confirmed that O3 enhanced the biodegradability by increasing LMW dissolved organic matter.
        4,000원
        18.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.
        4,000원
        1 2 3 4 5