검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        2.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
        4,000원
        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tungsten heavy alloys (W–Ni–Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.
        4,000원
        4.
        2017.11 구독 인증기관·개인회원 무료
        Zeolitic imidazolate framework-8 (ZIF-8) has drawn attention as a nanofiller for thin-film nanocomposite (TFN) reverse osmosis (RO) membranes to improve desalination performance due to their high porosity and high surface area. Although a few studies on ZIF-8 embedded TFNs have been reported, size effects of ZIF-8 particles on TFNs have not yet been studied. In this work, TFNs incorporated with different sizes of ZIF-8 (small, middle, large) were prepared and the ZIF-8 particles were characterized using electron microscopy and XRD. All of TFNs incorporated with ZIF-8 showed a higher water permeance without losing NaCl rejection compared to the bare RO membranes. Remarkably, TFNs with middle size of ZIF-8 represented the highest water permeance, which is attributed to the highest volume fraction of ZIF-8 filler in polyamide matrix.
        5.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heattreatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heattreated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.
        4,000원
        6.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) NH4OH. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and NH4OH. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in NH4OH. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the NH4OH-based magnetite.
        4,000원
        7.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we fabricated Nd2Fe14B hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of Nd2Fe14B. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentra- tions of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to con- trol the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of Nd2Fe14B phase and magnetic properties was investigated.
        4,200원
        8.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, macroporous carbon materials were readily prepared by carbonization of cured body of resorcinol and formaldehyde using poly(methyl methacrylate) colloid microspheres which were employed as the template in the gelation of resorcinol with formaldehyde. The gel in the water was solvent exchanged with methanol and the wet gel was dried. After carbonization of the template-gel composite at , it was found that pores were left corresponding to the size of the template, yielding carbon materials with a fine porous structure with enlarged surface area and significant porosity. Properties of the carbon foams including the structure, morphology, thermal stability, and porosity were investigated. Finally, it was concluded that the method using polymer colloids as the template provided a facile route to prepare carbon foams.
        4,000원
        10.
        2006.09 구독 인증기관·개인회원 무료
        In the paper, the influence of different particle size D:D>125μm, D<50μm and between on magnetic properties of a standardized dielectromagnetic is presented. The tests were taken at frequencies of between 50Hz, and 500Hz. Presented in the paper results provide important materials property data to allow the selection of the most appropriate dielectromagnetic particle size for different applications.
        11.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Highly crosslinked micron-size monodispersed PMMA/PDVB and PS/PDVB particles were prepared using seeded multi-stage emulsion polymerization. PMMA and PS seed particles were synthesized by seeded multi-stage emulsion polymerization and soap-free emulsion polymerization. Then PMMA/PDVB and PS/PDVB particles were obtained using semi-batch type emulsion polymerized using divinyl benzene as a cross-linkable monomer in the presence of seed particles. PMMA particles with size of ca. 730 nm and polydispersity of 1.03 were successfully prepared in this experiment. PS particles with size of ca. 1.5 μm and polydispersity of 1.01 were prepared in this experiment. Highly crosslinked PS/PDVB particles with size of ca. 1.3 μm and polydispersity of 1.00 were obtained.
        4,000원
        12.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Aerosol mass size distributions were investigated at 865 m high the of Jirisan national park. A nanosampler cascade impactor was used to collect aerosols. The atmospheric aerosol particles had a unimodal mass size distribution, which peaked at 0.5–1.0 μm, and a mass aerodynamic diameter of 1.13 μm. The annual average concentrations of TSP, PM10, PM2.5, PM1, PM0.5 and PM0.1 were 20.9 μg/m3, 19.3 μg/m3, 14.9 μg/m3, 10.7 μg/m3, 5.3 μg/m3, 1.2 μg/m3, respectively. TSP concentrations were below 30 μg/m3 during the sampling period. On average PM10, PM2.5, PM1, PM0.5 and PM0.1 made up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.
        13.
        2015.05 KCI 등재 서비스 종료(열람 제한)
        Atmospheric aerosol particles were investigated at GNTECH university in Jinju city. Samples were collected using the Nanosampler period from January to December 2014. The Nanosampler is a 6 stage cascade impactor(1 stage : > 10 μm, 2 stage : 2.5~10 μm, 3 stage : 1.0~2.5 μm, 4 stage : 0.5~1.0 μm, 5 stage : 0.1~0.5 μm, back-up : < 0.1 μm) with the stages having 50% cut-off ranging from 0.1 to 10 μm in aerodynamic diameter. The mass size distribution of Atmospheric aerosol particles was unimodal with peak at 1.0~2.5 μm or 0.5~1.0 μm. The annual average concentrations of TSP, PM10, PM2.5, PM1, PM0.5 and PM0.1 were 44.0 μg/m3, 40.3 μg/m3, 31.4 μg/m3, 18.0 μ g/m3, 8.2 μg/m3, 3.0 μg/m3, respectively. On average PM10, PM2.5, PM1, PM0.5 and PM0.1 make up 0.91, 0.70, 0.41, 0.19 and 0.07 of TSP, respectively. The annual average of PM2.5/PM10 ratio was 0.77.
        14.
        2011.04 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to compare the toxicity of nano and micrometer particles with Cu and Zn on soil microbial community and metal uptake of buck wheat. In microcosm system, soil was incubated for 14 days after soil aliquots were artificially contaminated with 1,000 mg/kg Cu, Zn nano and micro particles, respectively. After then, buck wheat was planted in incubating soils and non incubating soils. After 14 days, we compared bioaccumulation of metal, and microbial carbon substrate utilization patterns between incubating soils and non-incubating soils. The enrichment factor (EF) values of incubating samples were greater than non-incubating soils. Dehydrogenase activity had been inhibited by Cu and Zn nanoparticles in non-incubating soil, as well as it had been inhibited by Zn micro particles in incubating soils. Results of biolog test, it was not significant different between nano particles and micro particles. It cannot be generalized that nanoparticles of metal are always more toxic to soil microbial activity and diversity than micrometer-sized particles and the toxicity needs to be assessed on a case-by-case basis.
        15.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        Deposited road particles (DRPs) were analysed for heavy metal concentrations at four different roads in a city, Korea. The samples were collected using a roadway surface vacuum cleaning vehicle which was commonly used in collecting roadway surface particles. Six particle size ranges were analyzed separately for twelve heavy metal elements (Cd, Cr, Pb, Ni, Al, As, Co, Cu, Fe, Mn, Zn and Hg). At all sampling sites, the high concentration of the heavy metals occurred in the <74um particle size range, which conventional roadway cleaning vehicles do not remove efficiently. The Pb concentration significantly increased with decreasing particle size of DRPs, and other toxic heavy metals (Cd, Cr and Ni) also showed similar results. The heavy metal concentrations in the smaller size fraction of DRPs is important because they are contaminants that are preferentially transported by road runoff during rainfall.