검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : As evaluation methods for road paving materials become increasingly complex, there is a need for a method that combines computational science and informatics for new material development. This study aimed to develop a rational methodology for applying molecular dynamics and AI-based material development techniques to the development of additives for asphalt mixtures. METHODS : This study reviewed relevant literature to analyze various molecular models, evaluation methods, and metrics for asphalt binders. It examined the molecular structures and conditions required for calculations using molecular dynamics and evaluated methods for assessing the interactions between additives and asphalt binders, as well as properties such as the density, viscosity, and glass transition temperature. Key evaluation indicators included the concept and application of interaction energy, work of adhesion, cohesive energy density, solubility parameters, radial distribution function, energy barriers, elastic modulus, viscosity, and stress-strain curves. RESULTS : The study identified key factors and conditions for effectively evaluating the physical properties of asphalt binders and additives. It proposed selective application methods and ranges for the layer structure, temperature conditions, and evaluation metrics, considering the actual conditions in which asphalt binders were used. Additional elements and conditions considered in the literature may be further explored, considering the computational demands. CONCLUSIONS : This study devised a methodology for evaluating the physical properties of asphalt binders considering temperature and aging. It reviewed and selected useful indicators for assessing the interaction between asphalt binders, additives, and modified asphalt binders and aggregates under various environmental conditions. By applying the proposed methods and linking the results with informatics, the interaction between asphalt binders and additives could be efficiently evaluated, serving as a reliable method for new material development.
        4,600원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed. METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined. RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process. CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
        4,000원
        7.
        2022.05 구독 인증기관·개인회원 무료
        Tin slag is a byproduct obtained from the tin smelting industry and contained naturally occurring radioactive material (NORM); therefore, it has to be managed accordingly. This study focuses on recycling the waste in exchange for natural aggregates for road pavement due to the potential features as construction materials. The main objective of this study is to analyze the use of tin slag by diluting its radioactivity level and as the replacement of natural aggregates while focusing on identifying the mechanical properties of the mixture. Tin slag was used as coarse aggregate in the range of 0–85% while the percentage of recycle glass was maintained at 15% and granite rocks in range of 0–100%. In this research, the concentration activity of NORM in tin slag have been measured using a gamma ray spectrometer. Few laboratory tests for the final product are carried out such as Los Angeles abrasion value (LAAV), aggregate crushing value (ACV), and aggregate impact value (AIV). This study was also conducted to analyze the leachability of As, Cd, Ba, Cr, Pb, Se and Ag from the different composition. From the measurement result, the average concentration of 226Ra, 232Th and 40K are 318.21 Bq·kg−1, 602.07 Bq·kg−1 and 89.84 Bq·kg−1, respectively. The outdoor dose rates were found to be lower than 1.5 mSv·yr−1 in sample A1, A2 and A3 which is the recommended limit for construction materials. The sample toxicity was assessed using the toxicity characteristic leaching procedure (TCLP) and the concentration of the elements studied was analysed using ICP-MS. The result from the analysis indicated that the concentrations of the heavy metal elements were between 0.001–26.94 mg·kg−1, which is lower than the limit for each element. As a conclusion, addition of tin slag between 5 to 25% in exchange of granite rocks as road pavement have showed potential evidence in the test for construction material. Besides, it has low leachability to the environment while diluting the radioactivity level.
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to preliminarily examine the field applicability of modular pavement marking tape (PMT) to increase the lane awareness of motorists on existing roadways. METHODS : A pavement marking tape (PMT) comprises an adhesion layer and a paint coating layer. The adhesion layer is prepared using gussasphalt-based materials that have properties similar to those of existing asphalt materials. Thermal adhesion is performed to adhere the tape to the pavement. For the paint coating layer, polyurea materials are selected after reviewing the existing materials suitable for pavement lane marking. To conduct field evaluations on the adhesion layer, monitoring is performed after the pilot deployment of the PMT is completed. Twelve samples are prepared to investigate the optimal ratios for the mixture of paint coating layer materials. The durability of the PMT is examined using a turntable road-marking test system (RPA) with a wheel load on the samples. A total of 50,000 RPA, equivalent to P4, is performed. The performance is evaluated by capturing the retroreflectivity measure, which is used as an indicator of the pavement marking performance. The PMT is utilized on a roadway segment with significant heavy vehicle traffic, and continuous monitoring is performed to examine its performance in the field. RESULTS : Based on a visual inspection of the adhesion layer material, no significant issue is observed in terms of the adhesion performance of the PMT. Furthermore, the overall retroreflectivity obtained from the RPA exceeds 300 mcd/m2·lux. It is discovered that the optimal ratios for the mixture of polyurea and binder for the paint coating layer are 4:6 and 2:8, respectively, which results in a retroreflectivity that is 90% or above the initial retroreflectivity. Using a prototype of the PMT for field tests, a performance evaluation is conducted by analyzing the retroreflectivity measured after 2 and 7 weeks from the prototype deployment. The retroreflectivity measured for the first 2 weeks after the deployment appears acceptable for field use. However, the retroreflectivity is reduced significantly when it is measured 7 weeks after deployment, resulting in the necessity for a more reliable material that can retain long-term durability. CONCLUSIONS : The lane awareness of a motorist is crucial for accident mitigation under not only nighttime driving, but also severe weather conditions. In this regard, modular PMT is expected to increase the lane awareness of motorists, thereby improving the quality of lane marking materials. In this study, various exploratory field tests are conducted to analyze the field applicability of the PMT. It is noteworthy that the results presented herein are obtained from preliminary performance evaluations of the PMT. Hence, further investigations pertaining to the long-term durability of PMTs must be conducted using advanced test equipment such as an accelerated pavement tester.
        4,000원
        11.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is aimed at developing an asphalt pavement material with high elasticity and watertight through mix design and laboratory tests. METHODS: High elastic (HE) asphalt modifier blended of thermoplastic elastomer, naphthene oil, mineral fiber and organic vulcanization accelerator was developed. Mix design was done to determine the aggregate gradation and optimum asphalt content for making high elastic and watertight asphalt mixture. Performance grade test of HE-modified asphalt binder as well as asphalt mixture tests, which include the tensile strength ratio test, Hamburg wheel tracking test, third-scale model mobile loading simulator(MMLS-3) test, four-point flexural fatigue test, and Texas reflection crack test were conducted to evaluate the characteristics of the HE-modified asphalt mixture. RESULTS: 7.7% optimum binder content was determined through the mix design, which met the quality criteria of Marshall asphalt mixture. The binder test indicated that the grade of the HE-modified asphalt was PG76-28. The results of the mixture tests indicated a tensile strength ratio of 0.92 and a rut depth of 6.2 mm at 20,000 cycles of Hamburg Wheel-Tracking Test. The asphalt mixture test also showed that the rut depth of HE-modified mixture was 39% less than that of Guss asphalt mixture. The crack resistance of the HE-modified mixture was 1.65 times higher than that of the Guss asphalt mixture from the Texas reflection crack test results. CONCLUSIONS: It can therefore be reasonable that HE-modified asphalt mixture is used as an intermediate layer in the asphalt overlay on concrete pavements. Additionally, the HE-modified asphalt mixture can be used for the asphalt pavement materials with high performance and watertight.
        4,000원
        12.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS: A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS: When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS: It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.
        4,000원
        13.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the tack-coating material’s properties using the bitumen bond strength(BBS) test and damping test as function of changed curing times. In this study, bonding strength tests were performed according to the curing time of tack coating materials. METHODS : In order to investigate bonding characteristic of tack coating materials, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the tack coating materials and aggregate substrate based on the AASHTO TP-91. Also, damping test as in situ test was used to determine an appropriate traffic openting time for construction vehicle. Four different tack-coating materials were used in this study. The BBS tests were performed a one hour curing and testing temperatures of 5℃, 15℃, and 25℃. Damping test was conducted at 30min, 60min, 90min, and 120 min of curing times with temperatures of 20℃ and 30℃. RESULTS and CONCLUSIONS : The BBS test results show various bond strength as function of tack coat materials. At the same testing condition, A tack coat material shows almost two times higher than D tack coat materials although both materials are satisfied the criteria of material’s physical properties. Also, Dampting test results shows similar trend with BBS test result. The damping test result was significantly changed as function of tack coat materials. Based on this study, the tack coating material’s curing time is very important. Therefore, both curing time and the bond strength’s characteristic has to be considered in standard specification.
        4,000원
        14.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the applicability of the pitch, which is produced during SDA petroleum upgrading process, as a pavement paving material. In order for the purpose, the physical and chemical properties of the pitch are analyzed, and then the various plasticizers are applied in the pitch. METHODS: Two types of pitch are selected from oil refinery companies, which are owned the SDA petroleum upgrading process. Also, two types of asphalt binders, PG 64-22 and PG 58-22, are employed to compare with the pitch because these two types of asphalt binders are currently used as paving materials. For the chemical property of the pitch, the composition of SARA (Saturate, Aromatic, Resin, Asphaltene), the elementary composition, and the functional group are analyzed. For the physical property of the pitch, the basic material property tests, such as penetration test, softening point test, flash point test, ductility test, and rotational viscometer test, are performed. Also, the DSR (Dynamic Shear Rheometer) test and the BBR (Bending Beam Rheometer) test are conducted using asphalt binder specimens obtained by both short term aging (Rolling Thin Film Oven, RTFO) and long term aging (Pressure Aging Vessel, PAV) processes. The rheological property of each pitch type is evaluated as a function of temperatures and loading cycles. PG 64-22 asphalt binder is used as a control material. RESULTS AND CONCLUSIONS: The Pitch may not be suitable for the pavement paving material without modifications, but the pitch can be used as alternatives of modified addictive or asphalt. If low molecular component, such as saturate and aromatic components, are added in the pitch based on the development of various plasticizers, it has a strong possibility for the pitch to be used as a alternative. However, in order to verify the performance property of the pitch, further research is needed.
        4,000원
        15.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Surface treatment is a favorable method in the pavement preventive maintenance. This study (Part Ⅰ) aimed to develop the low viscosity filling material for waterproof characteristics and high penetrable and weather resistance, and a series of companion study (Part Ⅱ) presents the coating characteristics and performance analysis using field and lab tests. METHODS : Hydrophobic characteristics of the advanced surface treatment material are observed and measured the filling depth and the permeability for sand and asphalt pavement specimen using the water absorption test and permeability test, X-RAY CT test. Color difference for the weather resistance using ultraviolet ray accelerated weathering test is compared with asphalt pavement specimens. RESULTS : The developed material shows the decreased water absorption and increased impermeable effect because of the hydrophobic characteristics. It is found that the filling depth is about 6mm and weather resistance is better than asphalt pavement specimen. CONCLUSIONS: The advanced hydrophobic - low viscosity filling treatment material is developed in this study (Part Ⅰ) to improve the waterproof characteristics and high filling capacity and weather resistance for the pavement preventive maintenance.
        4,000원
        16.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part Ⅱ) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part Ⅰ, which is a series of companion study. METHODS: Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS: It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.
        4,000원
        17.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the applicability of the pitch, which is produced during SDA petroleum upgrading process, as a pavement paving material. In order for the purpose, the physical and chemical properties of the pitch are analyzed, and then the various plasticizers are applied in the pitch. METHODS: Two types of pitch are selected from oil refinery companies, which are owned the SDA petroleum upgrading process. Also, two types of asphalt binders, PG 64-22 and PG 58-22, are employed to compare with the pitch because these two types of asphalt binders are currently used as paving materials. For the chemical property of the pitch, the composition of SARA (Saturate, Aromatic, Resin, Asphaltene), the elementary composition, and the functional group are analyzed. For the physical property of the pitch, the basic material property tests, such as penetration test, softening point test, flash point test, ductility test, and rotational viscometer test, are performed. Also, the DSR (Dynamic Shear Rheometer) test and the BBR (Bending Beam Rheometer) test are conducted using asphalt binder specimens obtained by both short term aging (Rolling Thin Film Oven, RTFO) and long term aging (Pressure Aging Vessel, PAV) processes. The rheological property of each pitch type is evaluated as a function of temperatures and loading cycles. PG 64-22 asphalt binder is used as a control material. RESULTS AND CONCLUSIONS: The Pitch may not be suitable for the pavement paving material without modifications, but the pitch can be used as alternatives of modified addictive or asphalt. If low molecular component, such as saturate and aromatic components, are added in the pitch based on the development of various plasticizers, it has a strong possibility for the pitch to be used as a alternative. However, in order to verify the performance property of the pitch, further research is needed.
        4,000원
        18.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objectives of this study are to develop the eco-friendly pavement material using polyurethane binder and evaluate mechanical properties of the developed binder and concrete. METHODS : The bending beam test was conducted to select the sample candidates of polyurethane binder based on the bending strength. The characteristics of viscosity, curing time, and temperature change of sample binder was examined on different temperature conditions. The mechanical properties of polyurethane binder was estimated using the dynamic modulus testing. The indirect tensile strength test was conducted on polyurethane binder concrete with different gradation and binder content for evaluating the mechanical properties of concretes. RESULTS : Based on the beading beam test, four different binder samples were prepared for estimate the mechanical properties. The viscosity of polyurethane binder tends to increase with increase of liquid temperature and the hardening phenomenon begins 10 to 15 minutes at room temperature after mixing the resin and hardener. It is observed that the dynamic modulus of binder increases as loading frequency increases and change of modulus is found to be the highest in the PU-2I binder type. The PU-2I binder concretes shows the largest value of indirect tensile strength and indirect tensile energy. CONCLUSIONS : The use of polyurethane binder as pavement materials is capable of increasing the pavement performance and reducing the detrimental environmental effect during the highway construction.
        4,000원
        19.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.
        4,000원
        1 2