서식반경이 좁고 개체수가 감소하는 경향을 보이고 있어 멸종위기 종으로 지정된 뚱보주름메뚜기(Haplotropis brunneriana Saussure 1888)를 대상으로 개체군 추이와 적절한 모니터링 방법을 확인하기 위해 방형구법과 선조 사법을 이용하여 밀도 조사를 수행하였다. 뚱보주름메뚜기에 대한 조사 자료가 부족하여 먼저 방형구법을 이용 하여 2021년 3월부터 6월까지 월 1회 서식지 내 개체군 밀도를 확인한 결과 6개체/100㎡(3월), 2개체/100㎡(5, 6월)로 각각 영월과 제천에서 가장 많은 개체가 확인되었고, 지역 간에 유의한 차이는 나타나지 않았다(p > 0.05). 선조사법을 이용하여 2022년 3월부터 6월까지 월 3회 개체군 밀도를 확인한 결과 1.5(±0.79)개체/100㎡, 0.76(±0.11)개체/100㎡로 각각 영월과 제천에서 4월에 가장 많은 개체가 확인되었고, 지역 간에 유의한 차이는 나타나지 않았다(p > 0.05). 조사 방법에 따라 시기와 면적에 차이가 있어 이 두 방법을 정확히 비교할 수 없으나, 공통 적으로 3, 4월 약충 시기에 많은 개체가 확인되는 것을 알 수 있었다.
Due to climate change and the rise in international transportation, there is an emerging potential for outbreaks of mosquito-borne diseases such as malaria, dengue, and chikungunya. Consequently, the rapid detection of vector mosquito species, including those in the Aedes, Anopheles, and Culex genera, is crucial for effective vector control. Currently, mosquito population monitoring is manually conducted by experts, consuming significant time and labor, especially during peak seasons where it can take at least seven days. To address this challenge, we introduce an automated mosquito monitoring system designed for wild environments. Our method is threefold: It includes an imaging trap device for the automatic collection of mosquito data, the training of deep-learning models for mosquito identification, and an integrated management system to oversee multiple trap devices situated in various locations. Using the well-known Faster-RCNN detector with a ResNet50 backbone, we’ve achieved mAP (@IoU=0.50) of up to 81.63% in detecting Aedes albopictus, Anopheles spp., and Culex pipiens. As we continue our research, our goal is to gather more data from diverse regions. This not only aims to improve our model’s ability to detect different species but also to enhance environmental monitoring capabilities by incorporating gas sensors.
본 연구는 토마토의 주요해충인 토마토녹응애(Aculops lycopersici Massee)의 조기 예찰을 위한 새로운 예찰법 개발에 관한 것이다. 토마토 녹응애는 4월경 최초 발생하여 토마토의 아래 줄기부터 감염시키며 엽병을 타고 잎으로 이동한다. 발생이 심할 경우 줄기는 다소 광택이 나면서 녹이 낀 색을 보이며, 잎은 은빛을 띠다가 점차 녹슨 형태를 띠고 잎 끝이 말린다. 성숙된 과실보다 푸른색을 띠는 시기에 피해를 주며 과실에 피해가 보일 경우는 밀도가 상당히 높아야 하기 때문에 과실 피해를 보기란 쉽지 않다. 녹색의 라벨스티커에서 최초로 토마토녹응애를 찾아내는데 걸리는 시간은 약 7.0초로 가장 짧았으며 청색, 주황색, 백색의 경우 각각 17.1, 19.8, 12.3초의 시간이 걸렸다. 투과현미경에 측광을 주었을 때 가장 관찰이 용이하였다. 토마토녹응애는 4월 하순부터 발생하여 5월 중순 이후 급격히 밀도가 증가하였으며, 6월 중하순경 최대 발생 양상을 보이고 기온이 높아지면서 6월 하순 이후 밀도가 급격히 감소하였다. 토마토녹응애 접종 후 개체군 증가를 보았을 때, 접종 20일 후 하단부 줄기에서 최초로 관찰되었고 60일 후에는 상단부 줄기에서도 관찰되었다. 접종 후 최대의 발생량을 보이는 시기는 줄기의 경우 40일부터 60일까지였으며 잎의 경우는 약 80일 후였다. 라벨스티커는 토마토재배지에서 토마토녹응애의 발생을 예찰하기에 충분하였다
Density of malaria vector mosquitoes, Anopheles mosquitoes, and infection of Plamodium vivax from the vector mosquitoes were monitored at 9 surveillance points in Incheonsi, 12 in Gyeonggi province and 7 in Gangwon province in the Republic of Korea (ROK) from April to October of 2010. The seasonal numbers of Anopheles mosquitoes collected weekly showed a high degree of variability. A total of 4,435 mosquitoes were captured using black light traps. Members of the Anopheles mosquito group were the most abundant species and accounted for 71.8% of the mosquitoes collected. The majority of this species were collected from Incheonsi (86.2%), particularly from Ganghwagun (84.8%). During June, populations of this species steadily increased and peak at second week of July. Thereafter, populations of this species decreased by the second week of August and increased by the third week of August, again. Anopheles mosquitoes steadily decreased from the fourth week of August. First Anopheles mosquitoes were reported in Wolgotri (15th weeks/year), Ganghwagun, Incheonsi, followed by Tanhyundong (16th weeks/year), Pajusi, Gyeonggi Province and Daemari (17th weeks/year), Cheolwongun, Gangwon Province. In Ganghwagun in which the most abundant malaria patients (102 patients) were reported, Anopheles mosquitoes demonstrated the highest species portion (over 70%) among collected mosquito species from July to September. Infection rate of P. vivax from the Anopheles mosquitoes also was the highest in Ganghwagun. In Gangwon and Gyeonggi provinces, collection rate of Anopheles mosquitoes and infection rate of P. vivax were relatively lower than those of Ganghwagun. Reported malaria patient cases in Gangwon and Gyeonggi provinces also were relatively lower than those of Ganghwagun. However, detailed results showed that there were some sites in which any correlation between malaria patients and vector mosquitoes were not. This may be resulted from size of surveillance area. Smaller size of surveillance area was, higher accuracy of analysis on correlation between vector mosquitoes and patients was. Further studies on relationship between malaria vector and patients may need for more accurate analysis, such as increase of collection site and so on.
Local and seasonal populations of the oriental fruit moth, Grapholita molesta , were monitored with sex pheromone trapping and RAPD (random amplified polymorphic DNA) molecular marker to analyze their movement in apple orchards. To detect their movements among farms, pheromone traps were placed at regions between apple farms (‘outside-farms’) as well as within-farms (‘inside-farms’). Four seasonal adult peaks were evident in apple-cultivating fields from April to October in both trappings of inside- or outside-farms. After overwintering generation, populations of inside-farms were significantly reduced with frequent insecticide applications, compared to populations of outside-farms. Within apple farms, G. molesta tended to be unevenly distributed because of significant sublocal preference. Active movements of local and seasonal populations of G. molesta were supported by gene flow analysis using RAPD marker. Monitoring data using sex pheromone and seasonal reduction in initial genetic differentiation detected in the overwintering populations suggest that there must be significant movement of G. molesta among different orchards in apple-cultivating areas.