검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.
        4,000원
        3.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For a plastic diffusion lens to uniformly diffuse light, it is important to minimize deformation that may occur during injection molding and to minimize deformation. It is essential to control the injection molding condition precisely. In addition, as the number of meshes increases, there is a limitation in that the time required for analysis increases. Therefore, We applied machine learning algorithms for faster and more precise control of molding conditions. This study attempts to predict the deformation of a plastic diffusion lens using the Decision Tree regression algorithm. As the variables of injection molding, melt temperature, packing pressure, packing time, and ram speed were set as variables, and the dependent variable was set as the deformation value. A total of 256 injection molding analyses were conducted. We evaluated the prediction model's performance after learning the Decision Tree regression model based on the result data of 256 injection molding analyses. In addition, We confirmed the prediction model's reliability by comparing the injection molding analysis results.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 데이터를 기반으로 한 인공지능 기계학습 기법을 활용하여 온실 내부온도 예측 시뮬레이션 모델을 개발을 수행 하였다. 온실 시스템의 내부온도 예측을 위해서 다양한 방법 이 연구됐지만, 가외 변인으로 인하여 기존 시뮬레이션 분석 방법은 낮은 정밀도의 문제점을 지니고 있다. 이러한 한계점 을 극복하기 위하여 최근 개발되고 있는 데이터 기반의 기계 학습을 활용하여 온실 내부온도 예측 모델 개발을 수행하였 다. 기계학습모델은 데이터 수집, 특성 분석, 학습을 통하여 개 발되며 매개변수와 학습방법에 따라 모델의 정확도가 크게 변 화된다. 따라서 데이터 특성에 따른 최적의 모델 도출방법이 필요하다. 모델 개발 결과 숨은층 증가에 따라 모델 정확도가 상승하였으며 최종적으로 GRU 알고리즘과 숨은층 6에서 r2 0.9848과 RMSE 0.5857℃로 최적 모델이 도출되었다. 본 연 구를 통하여 온실 외부 데이터를 활용하여 온실 내부온도 예 측 모델 개발이 가능함을 검증하였으며, 추후 다양한 온실데이 터에 적용 및 비교분석이 수행되어야 한다. 이후 한 단계 더 나아 가 기계학습모델 예측(predicted) 결과를 예보(forecasting)단 계로 개선하기 위해서 데이터 시간 길이(sequence length)에 따른 특성 분석 및 계절별 기후변화와 작물에 따른 사례별로 개발 모델을 관리하는 등의 다양한 추가 연구가 수행되어야 한다.
        4,200원
        5.
        2022.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry’s yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of ‘Seolhyang’ (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.
        4,000원
        6.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 도로 노면결빙 판정 알고리즘에 대해 알고리즘을 개선하고 실제 현장 측정 자료와 알고리즘 예측값을 비교하였을 때 알고리즘에 대한 적중률을 분석하였다. 분석을 위하여 포천시 신북면 금 동리의 도로 및 기상을 측정하였다. 알고리즘은 기존 도로 결빙 알고리즘을 선정하여 실제 결빙 조건 및 측정 수치에 맞춰 4차 알고리즘까지 개선하였다. 최종적으로 응결에 의한 결빙, 강수에 의한 결빙, 적설에 의한 결빙, 결빙상태의 지속, 풍속에 의한 결빙 5개의 알고리즘을 제작하였다. 포천 현장에서 알고리즘을 활용하여 예측할 경우 경우 결빙 적중률이 93.22%까지 개선되었다. 결빙 알고리즘에 대한 조합 비율에 대 해 도출하였을 때 응결에 의한 결빙과 결빙상태의 지속에 대한 알고리즘이 96%를 차지하였다.
        4,800원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m³ and MSE was 7.40 mg/m³ and R² was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m³ of RMSE in the machine learning hyperparameter adjustment result.
        4,000원
        9.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 화재진압 및 피난활동을 지원하는 딥러닝 기반의 알고리즘 개발에 관한 기초 연구로 선박 화재 시 연기감지기가 작동하기 전에 검출된 연기 데이터를 분석 및 활용하여 원격지까지 연기가 확산 되기 전에 연기 확산거리를 예측하는 것이 목적이다. 다음과 같은 절차에 따라 제안 알고리즘을 검토하였다. 첫 번째 단계로, 딥러닝 기반 객체 검출 알고리즘인 YOLO(You Only Look Once)모델에 화재시뮬레이션을 통하여 얻은 연기 영상을 적용하여 학습을 진행하였다. 학습된 YOLO모델의 mAP(mean Average Precision)은 98.71%로 측정되었으며, 9 FPS(Frames Per Second)의 처리 속도로 연기를 검출하였다. 두 번째 단계로 YOLO로부터 연기 형상이 추출된 경계 상자의 좌표값을 통해 연기 확산거리를 추정하였으며 이를 시계열 예측 알고리즘인 LSTM(Long Short-Term Memory)에 적용하여 학습을 진행하였다. 그 결과, 화재시뮬레이션으로부터 얻은 Fast 화재의 연기영상에서 경계 상자의 좌표값으로부터 추정한 화재발생~30초까지의 연기 확산거리 데이터를 LSTM 학습모델에 입력하여 31초~90초까지의 연기 확산거리 데이터를 예측하였다. 그리고 추정한 연기 확산거리와 예측한 연기 확산거리의 평균제곱근 오차는 2.74로 나타났다.
        4,000원
        10.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.
        4,000원
        12.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 인명구조활동을 지원하기 위한 피난동선예측 알고리즘 개발의 첫 단계로 피난동선예측 알고리즘의 개념을 정립 하고 그 타당성을 수치적으로 명확히 제시하였다. 제안하는 알고리즘은 평상시 선박내 모니터링 시스템으로부터 지속적으로 승객이동 데이터를 취득, 분석, 정형화하고, 재난발생시 이 데이터와 예측 툴을 활용해 도출한 승선자의 피난동선예측 정보를 구조자에게 제공하여 인명피해를 최소화시키는 프로세스로 요약할 수 있다. 피난훈련을 통해 피난특성 데이터를 취득하였고 이를 기존 인명피난예측 툴에 입력하여 피난특성을 예측한 결과, 예측 툴의 구조적 원인으로 인해 가시거리가 충분히 확보되고 피난경로를 충분히 숙지한 상황에서의 피난 시나리오(SN1)에서만 신뢰할 만한 예측결과가 도출되었다. 본 연구에서 제안하는 알고리즘의 타당성을 확인하기 위해 타 분야의 예측툴을 사용하여 피난특성을 예측한 결과, 제안 알고리즘이 구현될 경우 평균피난시간예측값과 피난동선(지점경유)예측값이 각각 0.6 ~ 6.9%, 0.6 ~ 3.6% 범위의 오차에서 실측값과 매우 유사한 경향을 보였다. 향후 선내 모니터링 데이터를 분석하고 이를 활용한 예측성능이 우수한 피난동선예측 알고리즘을 개발할 계획이다.
        4,000원
        13.
        2016.05 구독 인증기관·개인회원 무료
        역삼투 해수담수화 공정에서 막 오염은 생산수량 감소 및 공정의 에너지 소비량 증가를 야기한다. 막간 차압 증가, 생산수량 감소 외에 막 저항 값의 증가는 막 오염 정도를 판단하는 수치로 사용이 가능하다. 특히 막 저항 값 기반의 세정은 막 오염 제어를 통해 역삼투 해수담수화 공정에서 막의 성능 유지 시 사용 가능하다. 이에 본 연구에서는 해수 수질 인자 및 공정 운전 인자에 기반하여 막 저항 값을 예측하는 알고리즘을 제안한다. 알고리즘은 해수담수화 플랜트의 운전 데이터에 기반하여 인자들과 막 저항 값 사이의 관계를 학습하고 검증과정을 거쳐 막 오염 발생 시점을 사전에 예측하는 방식으로 개발되었다. 예측 정확도를 분석하고 개발된 알고리즘의 수정을 통해 예측 정확도 향상을 위한 연구를 진행하였다.
        14.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 가까운 미래의 선박운동정보를 이용하는 피드포워드 제어알고리즘과 FPSO 운동 수치 시뮬레이션 모델을 개발하고 시뮬레이션을 통하여 제어알고리즘의 성능을 검증하는 것이다. 본 논문에서는 조류, 바람, 파력 등의 환경하중에 의하여 발생한 선체운동의 미래 예측치를 활용한 피드포워드 제어력을 추가적으로 가지는 Dynamic Positioning System에 대하여 연구한다. 먼저, 조류력, 풍력 및 파력에 대한 수학모델을 선정하여 환경하중에서의 선체운동을 계산하고, 현재의 선체운동 값과 Brown 지수평활 예측모형을 활용하여 미래 선체운동 값을 예측하였다. 또한 위치 유지와 Heading angle 제어를 위한 제어력을 PID(Proportional-Integral-Derivative)이론을 이용하여 결정한 피드백 제어기와 미래 선체운동 값을 이용하여 결정한 피드포워드 제어기로 구성하였다. 그리고 각 Thruster에 요구되는 추력은 라그랑지승수법을 활용하여 분배하였다. 마지막으로 FPSO(Floating Production Storage and Offloading)의 운동과 Dynamic Positioning System에 대한 시뮬레이션 모델을 구축하여 선박의 위치 및 Heading angle 제어에 관한 시뮬레이션을 수행하여 제안하는 피드백 제어기와 피드포워드 제어기를 동시에 가지는 제어시스템의 성능을 평가하였다. 본 연구의 결과, 피드백 및 피드 포워드 제어기가 적용된 DPS 제어시스템이 기존의 피드백 제어기보다 위치유지 및 헤딩각 유지 능력에서 개선되었고 각 Thruster에 요구되는 평균 제어력 및 최대 제어력의 크기도 감소함을 보였다. 이에 따라 DPS에 요구되는 동력 감축과 Azimuth Thruster 용량의 감소로 인하여 비용 절감의 효과를 기대할 수 있다.
        4,000원
        15.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 실험계획법(예: 반응표면계획법) 및 하모니 검색 알고리즘을 통하여 다양한 아스팔트 콘크리트 포장 구조체에 있어 피로균열의 공용성 인자인 인장변형률을 예측하는 모델을 개발하는 방법에 대한 연구이다. 인장변형률을 산정하기 위하여 한국건설기술연구소에서 개발한 유한요소 축대칭해석 프로그램인 KICTPAVE를 이용하여 아스팔트 층과 린콘크리트 층의 접속면에서 발생되는 변형률을 구하여 데이터베이스(D/B)화 하였다. 아스팔트 포장에서 입력변수인 층별 탄성계수 및 두께를 다양한 조건에서 KICTPAVE 프로그램을 수행하여 훈련용 D/B(Training Set)인 변형률의 값들을 구축한 후 반응표면계획법에 근거하여 회귀방정식을 정의하였으며 방정식에 필요한 계수값을 결정하기 위하여 하모니 검색 알고리즘을 이용하였다. 최종적으로 결정된 회귀방정식의 계수값들의 정확성을 검증하기 위해서 훈련용 D/B가 아닌 다른 조건의 입력변수를 이용하여 검증용 D/B(Testing Set)를 구축하고 이를 이용하여 개발된 모델을 검증하였다.
        4,000원
        16.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study suggests a personalized algorithm of physical activity energy expenditure prediction through comparison and analysis of individual physical activity. The research for a 3-axial accelerometer sensor has increased the role of physical activity in promoting health and preventing chronic disease has long been established. Estimating algorithm of physical activity energy expenditure was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 10 participants(5 males and 5 females aged between 20 and 30 years). The activities protocol consisted of three types on treadmill; participants performed three treadmill activity at three speeds(3, 5, 8 km/h). These activities were repeated four weeks.
        4,000원
        17.
        2019.04 서비스 종료(열람 제한)
        Carbonation of reinforced concrete is a major factor in the deterioration of reinforced concrete, and prediction of the resistance to carbonation is important in determining the durability life of reinforced concrete structures. In this study, basic research on the prediction of carbonation penetration depth of concrete using Deep Learning algorithm among artificial neural network theory was carried out. The data used in the experiment were analyzed by deep running algorithm by setting W/B, cement and blast furnace slag, fly ash content, relative humidity of the carbonated laboratory, temperature, CO2 concentration, Deep learning algorithms were used to study 60,000 times, and the analysis of the number of hidden layers was compared.
        18.
        2019.04 서비스 종료(열람 제한)
        The statistical data from WIM has been used only for traffic management and fatigue evaluation of structures. In this study, the algorithm using ESAL for assessment of pavement condition is proposed. To verify the algorithm, WIM system using PVDF sensor was installed on the pavement of bridge deck, also the automatic assessment software was developed. For the reliability verification of the alogorithm, further comparative study based on the long-term data is needed.
        19.
        2017.04 서비스 종료(열람 제한)
        As the importance of maintenance of reinforced concrete structures spreads, interest in the durability of structures is increasing. Among them, carbonation of concrete is one of the main deterioration factors of reinforced concrete structures. For quantitative evaluation of carbonation, many researchers are predicting carbonation considering water-cement ratio and environmental requirements. In this study, we studied the parameters based on the concrete made of ordinary Portland cement in the existing experimental data. The depth of carbonation deduced from the learning is applied to the carbonation by applying the deep learning.
        20.
        2012.05 서비스 종료(열람 제한)
        The main factor which makes RC structures weakening is corrosion of reinforced-bar that inserted in elements of the structure, and there are many researches that trying to figure out how to prevent degradation of strength of the re-bar. Because of that various factors effect on the deterioration of RC structures complexly, this paper suggest the indicator which can assess the failure probability of the structures.
        1 2