검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare short-term price predictive power among ARMA ARMAX and VAR forecasting models based on the MDM test using monthly consumer price data of frozen mackerel. This study also aims to help policymakers and economic actors make reasonable choices in the market on monthly consumer price of frozen mackerel. To analyze this study, the frozen wholesale prices and new consumer prices were used as variables while the price time series data were used from December 2013 to July 2021. Through the unit root test, it was confirmed that the time series variables employed in the models were stable while the level variables were used for analysis. As a result of conducting information standards and Granger causality tests, it was found that the wholesale prices and fresh consumer prices from the previous month have affected the frozen consumer prices. Then, the model with the highest predictive power was selected by RMSE, RMSPE, MAE, MAPE, and Theil’s inequality coefficient criteria where the predictive power was compared by the MDM test in order to examine which model is superior. As a result of the analysis, ARMAX(1,1) with the frozen wholesale, ARMAX(1,1) with the fresh consumer model and VAR model were selected. Through the five criteria and MDM tests, the VAR model was selected as the superior model in predicting the monthly consumer price of frozen mackerel.
        4,900원
        2.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using statistical tools like ARIMA and their business indices. And for examples, Indium and Coal were introduced.
        4,000원
        3.
        2013.10 구독 인증기관·개인회원 무료
        Recently, the mineral resource protection policies and regulations in production countries of natural resources including rare metals are becoming more stringent. Such environment makes which market has malfunction. In other word, those are not perfect or pure market. Therefore because each market of natural resources have special or unique characters, it is difficult to forecast their market prices. In this study, we constructed several models to estimate prices of natural resources using ARIMA and their business indices. And for examples, Indium and Coal were introduced.
        5.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using artificial neural network (ANN) technique, auction prices for common mackerel were forecasted with the daily total sale and auction price data at the Busan Cooperative Fish Market before introducing Total Allowable Catch (TAC) system, when catch data had no limit in Korea. Virtual input data produced from actual data were used to improve the accuracy of prediction and the suitable neural network was induced for the prediction. We tested 35 networks to be retained 10, and found good performance network with regression ratio of 0.904 and determination coefficient of 0.695. There were significant variations between training and verification errors in this network. Ideally, it should require more training cases to avoid over-learning, which leads to improve performance and makes the results more reliable. And the precision of prediction was improved when environmental factors including physical and biological variables were added. This network for prediction of price and catch was considered to be applicable for other fishes.
        4,000원
        6.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Purpose – The purpose of this study examines when the optimism impact on financial asset price forecasting and the boundary condition of optimism in the financial asset price forecasting. People generally tend to optimistically forecast their future. Optimism is a nature of human beings and optimistic forecasting observed in daily life. But is it always observed in financial asset price forecasting? In this study, two factors were focused on considering whether the optimism that people have applied to predicting future performance of financial investment products (e.g., mutual fund). First, this study examined whether the degree of optimism varied depending on the direction of the prior price trend. Second, this study examined whether the degree of optimism varied according to the forecast period by dividing the future forecasted by people into three time horizon based on forecast period. Research design, data, and methodology – 2 (prior price trend: rising-up trend vs falling-down trend) x 3 (forecast time horizon: short term vs medium term vs long term) experimental design was used. Prior price trend was used between subject and forecast time horizon was used within subject design. 169 undergraduate students participated in the experiment. χ2 analysis was used. In this study, prior price trend divided into two types: rising-up trend versus falling-down trend. Forecast time horizon divided into three types: short term (after one month), medium term (after one year), and long term (after five years). Results – Optimistic price forecasting and boundary condition was found. Participants who were exposed to falling-down trend did not make optimistic predictions in the short term, but over time they tended to be more optimistic about the future in the medium term and long term. However, participants who were exposed to rising-up trend were over-optimistic in the short term, but over time, less optimistic in the medium and long term. Optimistic price forecasting was found when participants forecasted in the long term. Exposure to prior price trends (rising-up trend vs falling-down trend) was a boundary condition of optimistic price forecasting. Conclusions – The results indicated that individuals were more likely to be impacted by prior price tends in the short term time horizon, while being optimistic in the long term time horizon.