검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 114

        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 중·저준위 방사성폐기물은 영구적 격리를 위해 처분장에 매립하고 있으며 그 위치는 경주에 있다. 이러한 방 사성폐기물의 영구적인 격리를 위한 처분시설은 공학적 방벽과 자연 방벽으로 구성되어 있으며 자연 방벽을 특성을 파악 하기 위하여 한국원자력환경공단에서는 2006년부터 부지특성조사를 수행하였고, 이후 부지감시 및 조사계획에 따른 감시 를 수행하여 부지특성의 변화를 지속적으로 확인하고 있다. 중저준위 방폐장의 수리지화학적 환경은 자연 방벽의 평가를 위해 중요한 요소로 손꼽히고 있으나 동해와 가까운 경주의 지역적 특성상 해수의 영향을 반드시 고려해야 한다. 따라서 본 연구에서는 처분 부지의 지하수 관정 7개 및 관정의 심도별 수질 자료를 취합해 지하수 자료 총 30개를 해수 2개소와 비교 분석하여 수리지화학적 환경을 해석하였다. 분석 자료는 수질 10개 항목(온도, EC, HCO3, Na, K, Ca, Mg, Cl, SO4, SiO2)을 2017년 3분기부터 2022년 3분기까지 총 5년간 20회의 자료를 활용하였다. 특히, EC, HCO3, Na, Cl의 농도 변화 를 통해 연구 지역의 배경 농도 및 관정의 구간별 해수의 영향을 파악하였으며, 시계열 군집 분석을 통해 담수, 기수, 해 수의 분류를 시도하였다. 그 결과, 기존의 모니터링 방법으로는 확인하지 못한 부지내 수리지화학적 변화를 제시하였다.
        4,600원
        12.
        2023.11 구독 인증기관·개인회원 무료
        When aluminum is in an alkaline state, the aluminum oxide film surrounding aluminum is dissolved and moisture penetrates the exposed aluminum surface, causing corrosion of aluminum. At this time, hydrogen gas is generated and there is a risk of explosion due to the generated hydrogen gas. Aluminum radioactive waste is difficult to permanently dispose of because it does not meet the standards for the acquisition of low- and intermediate-level radioactive waste cave disposal facilities currently managed and operated by the Korea Nuclear Environment Corporation. However, because of this risk, it is necessary to study how to safely treat and dispose aluminum waste. In this study, overseas cases were investigated and analyzed to ensure the safety of aluminum waste disposal, and the current status of aluminum radioactive waste generated during decommissioning of the Korea Research Reactor 1&2 and a treatment plan to secure disposal suitability were presented. The process of removing a little remaining oxygen in molten steel during the reduction of iron oxide in the iron refining process is called deoxidation, and a representative material used for deoxidation is aluminum. In the case of metal melting decontamination, which is one of the decontamination processes of radioactive metal waste, a method of treating aluminum waste by using aluminum as a deoxidizer is proposed.
        13.
        2023.11 구독 인증기관·개인회원 무료
        Understanding the long-term geochemical evolution of engineered barrier system is crucial for conducting safety assessment in high-level radioactive waste disposal repository. One critical scenario to consider is the intrusion of seawater into the engineered barrier system, which may occur due to global sea level rise. Seawater is characterized by its high ionic strength and abundant dissolved cations, including Na, K, and Mg. When seawater infiltrates an engineered barrier, such dissolved cations displace interlayer cations within the montmorillonite and affect to precipitation/ dissolution of accessory minerals in bentonite buffer. These geochemical reactions change the porewater chemistry of bentonite buffer and influence the reactive transport of radionuclides when it leaked from the canister. In this study, the adaptive process-based total system performance assessment framework (APro), developed by the Korea Atomic Energy Research Institute, was utilized to simulate the geochemical evolution of engineered barrier system resulting from seawater intrusion. Here, the APro simulated the geochemical evolution in bentonite porewater and mineral composition by considering various geochemical reactions such as mineral precipitation/dissolution, temperature, redox processes, cation exchange, and surface complexation mechanisms. The simulation results showed that the seawater intrusion led to the dissolution of gypsum and partial precipitation of calcite, dolomite, and siderite within the engineered barrier system. Additionally, the composition of interlayer cation in montmorillonite was changed, with an increase in Na, K, and Mg and a decrease in Ca, because the concentrations of Na, K, and Mg in seawater were 2-10 times higher than those in the initial bentonite porewater. Further studies will evaluate the geochemical sorption and transport of leaked uranium-238 and iodine-129 by applying TDB-based sorption model.
        14.
        2023.11 구독 인증기관·개인회원 무료
        In 2012, POSIVA selected a bentonite-based (montmorillonite) block/pellet as the backfilling solution for the deposition tunnel in the application for a construction license for the deep geological repository of high-level radioactive waste in Finland. However, in the license application (i.e. SC-OLA) for the operation submitted to the Finnish Government in 2021, the design for backfilling was changed to a granular mixture consisting of bentonite (smectite) pellets crushed to various sizes, based on NAGRA’s buffer solution. In this study, as part of the preliminary design of the deep geological repository system in Korea, we reviewed history and its rationale for the design change of Finland’s deposition tunnel backfilling solution. After the construction license was granted by the Finnish Government in 2015, POSIVA conducted various lab- and full-scale in-situ tests to evaluate the producibility and performance of two design alternatives (i.e. block/pellet type and granular type) for backfilling. Principal demonstration tests and their results are summarized as follows: (a) Manufacturing of blocks using three types of materials (Friedland, IBeco RWC, and MX-80): Cracking and jointing under higher pressing loads were found. Despite adjusting the pressing process, similar phenomena were observed. (b) 1:6 scale experiment: Confirmation of density difference inhomogeneity due to the swelling of block/pellet backfill and void filling due to swelling behavior into the mass loss area of block/pellet. (c) FISST (Full-Scale In situ system Test): Identification of technical unfeasibility due to the inefficient (too manual) installation process of blocks/pellets and development of an efficient granular in-situ backfilling solution to resolve the disadvantage. (d) LUCOEX-FE (Large Underground Concept Experiments – Full-scale Emplacement) experiment: Confirmation of dense/homogeneous constructability and performance of granular backfilling solution. In conclusion, the simplified granular backfill system is more feasible compared to the block/ pellet system from the perspective of handling, production, installation, performance, and quality control. It is presumed that various experimental and engineering researches should be preceded reflecting specific disposal conditions even though these results are expected to be applied as key data and/or insights for selecting the backfilling solution in the domestic deep geological repository.
        15.
        2023.11 구독 인증기관·개인회원 무료
        In Natural Analogue Study, Concrete is one of the important engineering barrier components in the Multi-thin wall concept of radioactive waste disposal and plays the most important role in disposal sites. The concrete barrier at the disposal site loses its role as a barrier due to various deterioration phenomena such as settlement, earthquake, and ground movement, causing the disposed waste to leak into the natural ecosystem. Some of the key factor is deterioration triggered by sulfate attack. Concrete deterioration induced by sulfate is commonly manifested in an extensive scale when a concrete structure makes contact with soil or water, aggravating its performance. In this study, an accelerated concrete deterioration evaluation experiment was performed using a total of three experimental methods to evaluate the reaction between concrete and water. The first experiment was a deterioration evaluation using Demi. Water, the second was a deterioration evaluation using KURT groundwater after extraction, and the last experiment was a concrete deterioration evaluation using KURT groundwater and sodium sulfate. For all of these experiments, accelerated concrete deterioration experiments were conducted after immersion for a total of 365 days, and specimens were taken out at 30-day intervals and characterization analysis such as SEM and EDS was performed. Experimental analyzes have shown that various chemical species are generated or destroyed over time. In the future, we plan to continue to conduct a total of three concrete deterioration evaluation experiments above, and additionally evaluate the chemical reaction between bentonite and concrete.
        16.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.
        5,100원
        17.
        2023.05 구독 인증기관·개인회원 무료
        Dry active waste (DAW) contains substantial amount of cellulose related materials. The DAW are usually classified as low and/or very low-level waste. In Korea, three types of disposal facilities have been considered: silo, engineering barrier, and land-fill. Currently, only the silo type disposal facility is in operation. Around 27 thousand drums were disposed in silo. Massive amount of cement concrete is used in construction of silo. The ground waste, which flow through the concrete structure, shows higher pH than as it is. It is generally known that the pH of silo is ~12.47 in Korea, when considering construction material, filling material, and property of ground water. It is expected that the cellulose in DAW will be partially transformed to isosaccharinic acid (ISA). It is generally accepted that the ISA plays a negative role in safety analysis of disposal facility by stimulation of specific nuclides. Various factors affect the degradation of cellulose containing radioactive waste, such as degree of polymerization, pH of disposal condition, interaction between concrete structure and ground water, etc. In this paper, the disposal safety analysis of cellulose containing radioactive, usually paper, cotton, wood, etc., are studied. The degradation of cellulose with respect to degree of polymerization, pH of neighboring water, filling material of silo, etc. are reviewed. Based on the review results, it is reasonable to conclude that the substantial amount of DAW could be disposed in silo.
        18.
        2023.05 구독 인증기관·개인회원 무료
        As the importance of radioactive waste management has emerged, quality assurance management of radioactive waste has been legally mandated and the Korea Radioactive Waste Agency (KORAD) established the “Waste Acceptance Criteria for the 1st Phase Disposal Facility of the Wolsong Lowand Intermediate-Level Waste Disposal Center (WAC)”, the detailed guideline for radioactive waste acceptance. Accordingly, the Korea Atomic Energy Research Institute (KAERI) introduced a radioactive waste quality assurance management system and developed detailed procedures for performing the waste packaging and characterization methods suggested in the WAC. In this study, we reviewed the radioactive waste characterization method established by the KAERI to meet the WAC presented by the KORAD. In the WAC, the characterization items for the disposal of radioactive waste were divided into six major categories (general requirements, solidification and immobilization requirements, radiological, physical, chemical, and biological requirements), and each subcategories are shown in detail under the major classification. In order to satisfy the characterization criteria for each detailed item, KAERI divided the procedure into a characterization item performed during the packaging process of radioactive waste, a separate test item, and a characterization item performed after the packaging was completed. Based on the KAERI’s radioactive waste packaging procedure, the procedure for characterization of the above items is summarized as follows. First, during the radioactive waste packaging process, the characterization corresponding to the general requirements (waste type) is performed, such as checking the classification status of the contents and checking whether there are substances unsuitable for disposal, etc. Also, characterization corresponding to the physical requirements is performed by checking the void fraction in waste package and visual confirmation of particulate matter, substances containg free water, ect. In addition, chemical and biological requirements can be characterized by visually confirming that no hazardous chemicals (explosive, flammable, gaseous substances, perishables, infectious substances, etc.) are included during the packaging process, and by taking pictures at each packaging steps. Items for characterization using separate test samples include radiological, physical, and chemical requirements. The detailed items include identification of radionuclide and radioactivity concentration, particulate matter identification test, free water and chelate content measurement tests, etc. Characterization items performing after the packaging is completed include general requirements such as measuring the weight and height of packages and radiological requirements such as measurements of surface dose rate and contamination, etc. All of the above procedures are proceduralized and managed in the radioactive waste quality assurance procedure, and a report including the characterization results is prepared and submitted when requesting acceptance of radioactive waste. The characterization of KAERI’s radioactive waste has been systematically established and progressed under the quality assurance system. In the future, we plan to supplement various items that require further improvement, and through this, we can expect to improve the reliability of radioactive waste management and activate the final disposal of KAERI’s radioactive waste.
        19.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR-1&2), the first research reactors in South Korea, began in 1997. Approximately 5,000 tons of waste will be generated when the contaminated buildings are demolished. Various types of radioactive waste are generated in large quantities during the operation and decommissioning of nuclear facilities, and in order to dispose of them in a disposal facility, it is necessary to physico-chemically characterize the radioactive waste. The need to transparently and clearly conduct and manage radioactive waste characterization methods and results in accordance with relevant laws, regulations, acceptance standards is emerging. For radioactive waste characterization information, all information must be provided to the disposal facility by measuring and testing the physical, chemical, and radiological characteristics and inputting related documents. At this time, field workers have the inconvenience of performing computerized work after manually inputting radioactive waste characterization information, and there is always a possibility that human errors may occur during manual input. Furthermore, when disposing of radioactive waste, the production of the documents necessary for disposal is also done manually, resulting in the aforementioned human error and very low production efficiency of numerous documents. In addition, as quality control is applied to the entire process from generation to treatment and disposal of radioactive waste, it is necessary to physically protect data and investigate data quality in order to manage the history information of radioactive waste produced in computerized work. In this study, we develop a system that can directly compute the radioactive waste characterization information at the field site where the test and measurement are performed, protect the stored radioactive waste characterization data, and provide a system that can secure reliability.
        20.
        2023.05 구독 인증기관·개인회원 무료
        A disposal of radioactive wastes is one of the critical issues in our society. Considering upcoming plans for dismantling of nuclear power plants, this problem is inevitable and should be discussed very carefully. There are variety of methods to handle with radioactive wastes, including Incineration, conventional gasification and plasma gasification. Among them, plasma gasification process is in the limelight due to its eco-friendly & stable operation, and large volume reduction effects. However, a fatal disadvantage is that it consumes more electric power than other methods, this leaves us a question of whether this process is indeed economical. Within the scope of this paper, I would like to introduce 4 cases which plasma facilities were evaluated economically in worldwide, and reach the conclusion on the economic feasibility of plasma process.
        1 2 3 4 5