검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2023.11 구독 인증기관·개인회원 무료
        High-temperature molten salts not only demonstrate exceptional thermal and chemical stability but also offer significant advantages in catalyzing chemical reactions. Consequently, they have garnered attention as a promising medium for next-generation nuclear reactors and a wide range of electrochemical processes. Nevertheless, the challenging experimental conditions in molten salts make applying conventional analytical methods to understand reaction mechanisms a formidable task. This underscores the imperative need for more intuitive approaches to investigate molten salt chemistry. One of the simplest yet potent methods involves real-time visual monitoring of the reaction system as chemical reactions progress. In light of this, we have developed an experimental system enabling real-time visual monitoring of the internal dynamics of molten salt media. This system can capture high-resolution videos and images within molten salts, surpassing existing methodologies. We have applied this system in various electrochemical experiments using the molten LiCl-KCl eutectic salt medium. Among them, this study primarily focuses on two challenging experimental scenarios that became comprehensible through our proposed system’s application: (1) the transpassivation of Zr metal and the agglomeration of potassium hexachlorozirconate (K2ZrCl6) solid salt, and (2) the solvation of electrons during the oxidation of Li metal within the molten LiCl-KCl eutectic salt.
        2.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To solve the common problems of concrete preparation in low-temperature environments, calcium formate (C2H2O4Ca), anhydrous sodium sulfate (Na2SO4), triethanolamine (C6H15O3N), calcium bromide (CaBr2), and triisopropanolamine (C9H21NO3) are selected as early strength agents and mixed with C40 concrete in different dosages under low-temperature environments of 5 oC and 10 oC to develop a high-efficiency low-temperature compound early strength agent based on the effect of single-doped early strength agents. The effects of the compound early strength agent on the early strength of the concrete, the cement paste setting time, and cement fluidity at 5 oC and 10 oC are investigated, and the corresponding reaction mechanism is discussed from the perspective of micro-products. The best compound early strength agent ratio is found to be 2% of calcium formate + 0.08 % of TEA (C6H15O3N). The compound early strength agent effectively promotes the formation of hydration products, such as Ca(OH)2 and C-S-H gel. In comparison with the control group, the strength of the concrete cured for 18 h, 1 d, 3 d, and 7 d under simulated natural conditions at 5 oC increases by 700%, 540%, 11.4 % and 10 %, respectively, whereas at 10 oC, the corresponding values are 991%, 400%, 19.6 % and 11 %, respectively. The strength of the concrete at each age is close to the normal temperature standard of the curing strength. The addition of the compound early strength agent causes a reduction in cement fluidity and initial and final setting times, and also yields a good effect on the porosity of the early concrete.
        4,600원
        4.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured and composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and powders. The raw materials have reacted to form a uniform mixture of TiN, and or depending on the amount of used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous or matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly
        4,000원
        9.
        1997.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 고령토, 유황, 탄산나트륨, 규석 및 송진을 원료로 하여 군청을 합성하였고, 그 반응 메카니즘을 조사하였다. 원료의 혼합시료는 군청의 중간 생성물인 녹색군청을 합성하기 위하여, 820˚C에서 4시간 동안 소성하였다(승온율 2˚C/min). 합성된 녹색군청은 최종적으로 군청을 얻기 위해 500˚C에서 산화처리하였다. 합성 과정에서 발생하는 반응 생성물 및 이들의 구조적 변화는 x선 회절 분석과 Raman Spectrum 분석에 의하여 평가하였다. 소성과정에서 황화나트륨은 500˚C에서 생성되었고, NaAISiO4는 620˚C에서 형성되었다. 그리고, 녹색군청은 황화나트륨과 NaAISiO4의 반응에 의하여 740˚C부근에서 형성하기 시작하였다. 또한, 청색군청의 형성은 녹색군청 중에 잔존하던 황화타트륨의 산화로 방출되는 유황 원자에 기인하였다.
        4,000원
        10.
        1996.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        (100) Si 기판위에 전자 빔 증착법을 이용하여 90Å두께의 Ti과 120Å두께의 Co를 순차적으로 증착시켰다. 그 후 질소분위기하의 350-900˚C온도구간에서 급속열처리함으로써 (100) Si 기판위의 Co/Ti 이중 박막의 실리사이드화 반응이 일어나게 했으며 이를 XRD, AES, TEM을 이용하여 분석하였다. 500˚C이하의 온도에서는 Co원자들이 Ti층쪽으로 빠르게 확산하여 Si와 반응하기 이전에 Ti원자들과 상호 혼합되어 어떠한 실리사이드도 형성되지 않았다. 500˚C에서 열처리된 시편의 고분해능전자현미경 영상을 통해 Co-Ti 혼합층과 실리콘 기판과의 계면에서 (100)Si 기판과 정합관계를 가지는 CoSi2가 형성되었음을 확인했다. 600˚C열처리에 의해 Co-Ti-Sitka성분 실리사이드가 형성되기 시작하였으며, 형성된 삼성분 실리사이드는 Ti의 out-diffusion에 의해 900˚C 이상의 온도에서는 불안정하였다. Co/Ti이중 박막에 의해 형성된 CoSi2는 실리콘 기판과 평탄한 계면을 가지며 실리콘 기판에 대해 (100)우선성장방위를 가졌다.
        4,000원
        12.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        This study aimed to describe the mechanism and reaction characteristics of the adhered mortar removal of recycled aggregate (RA) using microwave irradiation (700 W) and a mixed solution of HCl and H2O2. The HOCl concentration increased to 29.7 M at 35oC and 40 min of reaction time without RA in the mixed solution, which shows that HCl reacts with H2O2 to form HOCl and water. However, after nitrogen purging, the HOCl concentration decreased to 2.71 M in 20 min, which proves indirectly that HOCl reacts with HCl to form Cl2 and water. The HOCl concentration decreased from 29.7 M to 1.88 M at 35oC in 40 min with RA in the mixed solution, and the Ca2+ concentration increased to 9,750 mg/L, which demonstrates indirectly that mortar mainly composed of Ca(OH)2 reacts with Cl2 to form Ca(OCl)2 and CaCl2. The reaction rate (k) with microwave heating was about 2.3 times faster than that with conventional heating, and k at a reaction temperature of 50oC was about 1.3 times faster than that at 35oC. The treated RA was improved in density, water absorption, abrasion loss, and absolute volume.
        13.
        2005.07 KCI 등재 서비스 종료(열람 제한)
        A magenta azomethine dye(D) was synthesized from the reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with N,N-diethyl-1,4-phenylenediamine. The magenta azomethine dye was identified on the basis of elemental analysis, 13C-NMR, infrared, and GC/MS studies. The magenta azomethine dye was decomposed in a basic solution. Rate constants of the fading reaction of magenta azomethine dye in ethanol-water solvent were measured spectrophotometrically at 540 nm. Reaction rate was increased with the increase of [OH-] and [H2O] in the region of [H2O]= 11~40 M. The reaction was governed by the following rate law. -d[D]/dt = {ko + kOH[OH-][H2O]}[D] A possible mechanism consistent with the empirical rate law has been proposed.