선박용 디젤엔진의 NOx 환원제로 액체 우레아를 사용하는 SCR 기술이 널리 사용되고 있다. 하지만 액체 우레아 대신에 고체 상의 암모늄 카바메이트를 NOx 환원제로 사용하면 저온 NOx 저감율 및 암모니아 저장용량 측면 등에서 다양한 장점이 있다. 이에 따라 본 연구에서는 암모늄 카바메이트를 EA, FTIR, XRD 방법으로 분석하여 순도를 관리하는 방법을 제시하고자 하였으며, 다양한 온도와 압력 조건에 암모늄 카바메이트가 노출되었을 때의 물질 변화 특성을 고찰하고자 하였다. 본 연구를 통하여 암모늄 카바메이트의 순도를 EA 분석을 통해 효과적으로 관리 할 수 있음을 알 수 있었으며, 선박용 디젤엔진의 SCR 시스템에 적용될 것으로 예상되는 열분해 온도 조건에서 가열과 냉각을 반복한 암모늄 카바메이트에 대한 FTIR 분석결과, 물질 특성은 변화하지 않는 것을 확인하였다. 또한, 대기 중에 장기간 노출된 암모늄 카바메이트는 암모늄 카보네이트로 물질 변화함을 알 수 있었다.
Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 oC lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 oC, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 oC, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 oC. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.
Spherical Li3V2(PO4)3 (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using N2H4 as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as LiV(P2O7), Li(VO)(PO4) and Li3(PO4) can be obtained after calcination at 800 oC for 4 h. SEM and TEM images show that the particle sizes are 0.5~2 μm and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of 0.01 mV s–1 and at room temperature. At potentials between 3.0 and 4.8 V, the third Li+ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of 118 mAh g–1 in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.
Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about 12 μm, are fabricated at a temperature as low as 800 °C due to the reducibility of Mn. Wireand belt-like ZnO micro/nanocrystals with length of 3 μm are formed at 900 °C and 1,000 °C. When the growth temperature is 1,100 °C, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.
Spherical Ag powder was prepared in the system of by wet chemical reduction method. The size of Ag powder was increased as the reaction temperature and the concentration of reducing agent was decreased in the constant concentration of dispersion agent. Optimum conditions of producing Ag powder having of D50 was 1M of , 0.5M of , 1.5g of Gelatine in the room temperature.
라텍스 개질 콘크리트의 건축구조물 옥상 포장에 적용할 수 있는 기초연구로서, 포장면의 균열 저감을 위해 수축저감제의 혼입에 따른 모르타르의길이변화 성능을 평가하였다. 평가결과, 수축저감제를 혼입하지 않은 Plain에 비하여 수축저감제 혼입에 따라 모르타르 공시체의 길이변화율이 감소되는 것으로 나타났으며, 수축저감제 혼입량에 따른 변화량의 차이는 미소하였지만 균열저감 효과는 있는 것으로 확인되었다.
본 연구는 원유로부터 정제된 파라자일렌(Para Xylene)을 원료로 테레프탈산(TPA: Terephthalic acid)을 생산하는 공정에서 배출되는 저순도 테레프탈산 잔사인 CTA(Crude Terephthalic acid)의 악취저감을 위한 저감제 개발과 유기성슬러지의 고형연료 활용 방안에 관하여 연구하였다. TPA 석유화학 공정에서 발생되는 TPA 슬러지의 발생량은 0.3~0.4%/kg이며, 슬러지는 보관 또는 운송, 소각 과정에서 끊임없이 악취를 발생시키며 대기환경에도 많은 영향을 끼친다. 이러한 악취로 인해 고효율의 열량을 가졌음에도 화력발전소의 연료로 이용하지 못하고 있는 실정이다. 악취저감제는 탄소수가 많은 고지방산과 비이온계면활성제 등을 일정 조성비로 혼합하여 실험하였고, fatty acid 15~30, mono fatty acid 20~35, linolenic acid 20~35, oleic acid 20~25, palmitic acid 5~10, non0ionic surface active agent 5~7% 구성성분 조성비를 갖는다. TPA 유기성 슬러지를 고형연료로 활용하기 위해 고형연료 품질시험에 따른 전 망목에 대해 실험하였다. 고형연료 샘플 500g을 기준으로 TPA 슬러지와 TPA 슬러지에 애쉬 10%를 첨가한 시료 각 두 종류에 대하여 실험한 결과 저위발열량 기준 3,960과 3,540 kcal/kg으로 각각 나타나 고형연료제품 품질기준 3,500 kcal/kg 이상을 만족하여 활용가치가 높은 것으로 나타났다. 또한 염소 0.03%, 황분・수은・카드늄・납・비소・안티몬 불검출, 크롬 45.4mg/kg, 코발트 5,400 mg/kg, 구리 145 mg/kg, 망간 1,300 mg/kg, 니켈 44.4 mg/kg, 탈륨・바나듐 불검출로 나타났다. 악취저감을 위한 pilot-plant는 그림 1과 같이 구성하여 실험하였고, 악취저감제는 0~25% 슬러지 중량비로 주입하여 처리특성을 조사였다.
고도산화공정(Advanced Oxidation Process, AOP) 중 하나인 펜톤 산화법은 과산화수소(H2O2)와 2가철 이온(Fe2+)이 반응하여 OH 라디칼을 생성함으로써 OH 라디칼의 강한 산화력으로 유기물을 분해하는 방법이다. 펜톤 산화는 다양한 유기물과의 높은 반응성을 지닌다는 점과 생물학적으로 분해가 어려운 물질을 산화・분해시켜 생물학적 처리가 가능하도록 한다는 등의 장점을 지니고 있다. 그러나 펜톤 산화는 유기물과의 반응 후 펜톤 슬러지를 부산물로 다량 생성하기 때문에 발생된 슬러지를 처리하는 공정이 추가적으로 요구된다. 또한, 펜톤 슬러지는 원수에 따라 다량의 난분해성 물질과 철염 등을 함유하고 있기 때문에 처리하는 방법이 까다롭다. 펜톤 슬러지는 주로 매립으로 처리하였으나 매립지 크기의 한계 및 수명 단축, 비싼 처리비용 등의 문제가 뒤따르기 때문에 이에 대한 대책이 필요한 실정이다. 이러한 펜톤 슬러지를 처리하고자 다양한 연구가 진행되고 있다. 그 중 펜톤 슬러지를 촉매, 응집제 등으로 재이용하는 연구가 각광받고 있다. 한 연구는 펜톤 슬러지를 산에 용해하여 그대로 펜톤 산화 공정에 사용하는 방법과 산에 용해하여 환원을 거친 후 펜톤 산화 공정에 사용하는 방법을 비교하였다. 재생 횟수를 고려했을 때 환원을 거친 펜톤 슬러지가 효율적인 촉매 역할을 한다고 나타났다. 또한, 대부분의 펜톤 슬러지 환원은 철편을 사용한 것으로 나타났다. 그러나 철편을 사용할 경우, 기존 펜톤 슬러지가 가지고 있는 총 철의 농도에 영향을 미칠 뿐만 아니라 회수하는 것 또한 어려움이 있다. 본 연구는 환원제를 사용하여 펜톤 슬러지 내 철 이온을 전환함으로서 펜톤 산화용 철 촉매로 재이용하고자 하는 기초연구이다. 본 연구에서는 다양한 황 계통의 환원제를 사용하여 펜톤 슬러지 내 철 이온 형태를 Fe3+에서 Fe2+로 전환하고 각각의 환원제 별로 철 이온 전환 정도를 비교하여 최적의 환원제를 찾고자 하였다. 본 연구에서 사용한 환원제는 Sodium sulfite (Na2SO3), Potassium sulfite (K2SO3), Sodium bisulfite (NaHSO3)로 총 3가지이다. 본 연구는 ‘D’ 산업용수센터에서 발생하는 RO 농축폐수를 펜톤 산화로 처리한 후 부산물로 생성되는 펜톤 슬러지를 대상으로 실시하였다. 펜톤 슬러지는 황산을 사용하여 용해액 상태로 전환하여 실험에 사용하였다. 슬러지 용해액 1 L를 기준으로 각각의 환원제를 0.5 g씩 투입 후, 2 시간까지의 철 이온 농도 변화를 살펴보았다.
런던협약에 따라 2012년부터 해양투기가 전면 금지 됨에 따라 가축사육과정에서 발생하는 가축분뇨 처리에 있어서 환경적, 경제적인 문제를 보완할 수 있는 효율적 처리기술이 필요하다. 최근 농가당 가축사육 머리수가 증가하고 있어 가축사육수는 급격하게 증가하며, 이로 인해 사육과정에서 발생되는 가축분뇨 발생량은 계속 증가할 전망이다. 가축분뇨는 가축사육 특성에 다라 저장・관리 방법에 따른 뇨와 분을 분리하여 발생하는 액상(Liquid Phase) 및 고상(Soild Phase)으로 구분되며, 분뇨가 세척수와 혼합된 상태로 발생하는 슬러리상(Slurry Phase)으로 구분하여 처리하고 있다. 처리하는 가축분뇨는 수분함량이 높은 경우 퇴비화 시 톱밥등의 수분조절재가 과다로 투입되어 경제성이 낮아지고, 수분함량이 낮은 경우에 액비화시 공정수의 추가 및 희석하는 공정을 별도로 설치해야 되는 경제적인 문제가 발생할 수 있다. 또한 환경공단 악취관리센터 보도자료(2016)에 의하면 2015년도 전국 악취 민원은 15,573건 발생하였으며, 이 중에 농축산시설의 악취민원수가 4,323건(28%)로 높은 비중을 차지하고 있다. 본 연구에서는 가축분뇨를 처리하기위해 환원제로 이용할 경우 실제 SNCR공정에서 상용되고 있는 환원제와 비교하여 NSR비에 따른 NOx의 특성을 알아보고자 하였다.
이 연구의 목적은 개착식 전력구 콘크리트에 발생하는 부등건조수축에 의한 균열특성을 파악하고, 수축저감제 혼입에 따른 건조수 축균열특성을 분석하는데 있다. 따라서 이 연구에서는 전력구 박스형 콘크리트 구조물의 부등건조수축에 의한 균열특성을 파악하기 위하여 세 가지 주요영향인자를 고려한 수치해석과 수치해석을 한 결과와 실제 전력구 타설을 하여 측정한 차이를 확인해 보았다. 본 연구로부터 건조 수축 시험체에 대한 건조수축량을 산정에 대한 해석 기법을 개발하였으며, 실제 전력구 타설 실험을 통해 종방향 및 횡방향 균열발생 가능성을 입증 하였다. 전력구 실증시험체 건조수축량 수치해석 결과, 균열저감 콘크리트 배합의 경우 종방향 및 횡방향 응력에 있어 일반배합에 비해 40~50%정도의 현저한 감소를 보이며, 이에 따라 균열저감 콘크리트를 전력구에 적용하였을 경우 현저한 균열감소 효과를 보일 것으로 예측된다.
This research investigated the influence of adding SRA(Shrinkage reducing agent) on the direct tensile behavior of UHPFRC(Ultra high performance fiber reinforced concrete). The experimental test results revealed that the post cracking strength and strain capacity for the cement hydrated cement paste without at SRA were higher than that incorporate with 1% SRA.