검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The aim of this study is to develop a road fog information system based on the geostationary meteorological satellite (GK2A) for road weather services on highways. METHODS : Three threshold values sensitive to fog intensity in the GK2A fog algorithm were optimized using multi-class receiver operating characteristic analysis to produce road fog information depending on day and night. The developed a GK2A road fog algorithm that can detect three levels of road fog based on the visibility distance criteria (1km, 500m, and 200m). Furthermore, the GK2A road fog product was not only substituted with visibility objective analysis data in unknown and cloud-covered areas of satellite data, but also integrated with visibility distance data obtained from visibility gauges and CCTV image analysis to improve the accuracy of road fog information. RESULTS : The developed road fog algorithm based on meteorological satellite data provides real-time road fog information categorized into three levels (attention, caution, and danger) based on the visibility distance, with a spatial resolution of 1km × 1km and temporal resolution of 5 minutes. The road fog algorithm successfully detected road fog in five out of seven fog-related traffic accidents reported by Korean media outlets from 2020 to 2022, resulting in a detection success rate of 71.4%. The Korea Meteorological Administration is currently in the process of installing additional visibility gauges on 26 highways until 2025, and the next high-resolution meteorological satellite (GK5) is planned to be launched in 2031. We look forward to significantly improving the accuracy of the road fog hazard information service in the near future. CONCLUSIONS : The road fog information test service was initiated on the middle inner highway on July 27, 2023, and this service is accessible to all T-map and Kakao-map users through car navigation systems free of charge. After 2025, all drivers on the 26 Korean highways will have access to real-time road fog information services through their navigation systems.
        4,000원
        2.
        2024.03 구독 인증기관·개인회원 무료
        겨울철 국내 도로 결빙으로 인한 교통사고가 증가하는 추세를 보이고 있으며 2018년~2022년까지 총 4,609건의 결빙 교통사고가 발 생하였다. 결빙 교통사고의 치사율은 2.3으로 일반적인 교통사고와 비교하여 높은 치사율을 보이며 최근 5년(2018~2022)동안 결빙 교 통사고로 인하여 107명이 사망자와 7,728명의 부상자가 발생하였다. 현재 국토교통부에서 제시한 결빙 취약구간 평가기준표에 따라 결 빙 위험 구간을 지정하고 있으나, 해당 기준은 결빙의 주요 요인으로 고려되는 기상조건을 충분히 반영하지 못하고 있다. 도로 결빙은 노면온도가 0℃ 이하이며 노면에 수분이 공급될 때 형성되며 기온, 구름량, 풍속, 풍향, 상대습도, 강수량 등의 기상인자들이 복합적으 로 작용하여 결빙이 발생한다는 점을 고려하였을 때, 기상 특성은 도로 결빙의 주요 인자로 판단된다. 따라서 국내 결빙 취약구간 평 가기준의 개선이 필요하며 본 연구의 목적은 국내 결빙 교통사고 데이터를 분석하고 결빙이 형성되는 기상 조건을 구체화하는 것이다. 분석을 위한 데이터로 2018년~2022년까지 5년동안 발생한 결빙사고 사례와 기상청 방재기상관측소(AWS)에서 제공하는 기상 데이터 를 적용하였다. 이후, 박스도표, 확률밀도함수 등의 통계분석을 적용하여 결빙 형성 기상 조건을 구체화하였다. 이를 통하여 기존 결빙 취약구간 평가기준의 기상학적 개선 방향성을 제시할 수 있으며 더 나아가 도로 결빙 예측 로직 개발을 기대할 수 있다.
        6.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aimed to examine the relationship between discomfort glare and different types of lighting, including low-mounted lighting and conventional pole lighting. Although roadway lighting has been widely acknowledged as a countermeasure for nighttime traffic safety, discomfort glare, which is incidentally derived from lighting, is one of the key elements to overcome. METHODS : We selected the Unified Glare Rating (UGR), defined as a globally accepted lighting standard, as a measure of the effect of discomfort glare. Artificial rain and fog conditions were reproduced at the Center of Road Weather Proving Ground (CRPG). RESULTS : As a result, we found that the UGR of low-mounted lighting is reduced by 57.96% compared to pole lighting under rainy conditions, and by 39.12% in the case of fog conditions. CONCLUSIONS : It is proposed that discomfort glare was significantly reduced in the case of low-mounted lighting compared to pole lighting under both rain and fog conditions. Discomfort glare hinders the visual performance of drivers, so it may be related to delayed reaction time and inappropriate driving behavior. Therefore, low-mounted lighting is strongly recommended on road sections that have a high frequency of traffic accidents and adverse weather patterns.
        4,200원
        7.
        2018.05 구독 인증기관·개인회원 무료
        Adverse weather is a big challenge not only for the safety of drivers but the safety of Autonomous Vehicles (AV). The gap between human-driving and AV-driving in terms of adverse-weather-perception can be a new challenge for highway engineers. Solutions minimizing the gap need to be defined. By this, the smart road technologies can be specified and developed. The way how to define and quantify the gap is introduced in this presentation.
        8.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS: Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS: Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.
        4,000원
        9.
        2017.10 구독 인증기관·개인회원 무료
        기후변화로 인한 결빙, 폭설, 집중호우 등 도로에서의 기상조건은 해마다 수많은 인명 피해를 유발하고 있다. 그러나 급변하는 기상상태에 신속하게 대처할 수 있는 도로기상 대응체계가 미흡하여 교통사고로 인한 사회·경제적 손실이 가중되고 있다. 최근 교통사고 통계자료에 의하면 기상상태가 좋지 않을 때의 교통사고치사율은 맑은 날씨일 때 보다 2~3배 심각한 것으로 나타났다(교통안전공단 2016). 따라서 기상악화 시 교통사고예방에 필요한 구체적이고 상세한 기상정보를 운전자에게 제공함으로써 교통사고예방 및 도로 운영의 활용성을 높일 수 있는 도로기상 모델개발이 필요하다. 도로기상 모델과 관련해서 도로기상 선진국(유럽, 캐나다, 일본, 미국 등)은 1990년대 초반부터 도로 노면온도와 노면 결빙점 예측을 위한 다양한 모형을 개발하고 모델의 성능을 검증하기 위한 노력을 기울이고 있다(Meng, 2014; Sato, 2004). 이들 국가는 주요 도로에 대해서 도로기상 관리지원시스템을 구축‧운영하고 있으며, 개발된 모델로부터 추정된 노면상태 정보를 도로이용자 및 도로관리자에게 제공함으로써 교통사고 및 도로파손 손실에 따른 사회적 비용을 줄여나가고 있다. 우리나라 도로기상 분야는 결빙 취약구간인 터널의 입·출입부에 수용액 형태의 제설제 자동 분사장치를 설치하여 운영하고 있는 단계로서 도로기상 선진국과 같이 도로구간 단위로 확장하여 서비스할 수 있는 기술은 미흡한 단계이다. 이들 국가와 같이 도로기상 관리지원시스템을 운영하여 주요 도로에 대해서 도로기상 정보를 실시간으로 서비스하기 위해서는 도로의 한 지점만을 대상으로 하는 기술대응 보다는 전체 도로구간의 노면상태를 예측할 수 있는 기상상황별 통합모델 개발이 우선시 되어야 한다. 이러한 기술개발의 필요성에 따라서 본 연구에서는 기상상황별 노면상태를 서비스할 수 있는 통합모델을 개발하였다. 첫 번째 모델은 겨울철 도로노면의 상태를 예측할 수 있는 모델이다. 노면상태 예측모델은 기계학습 방법 중에 하나인 의사결정나무(Decision Tree) 알고리즘 기반으로 개발되었으며, 이동형 차량(Probe vehicle)에서 수집되는 기상입력 자료를 학습하여 기상요소에 따른 4가지 노면상태(Dry, Moist, Wet, Ice)를 예측할 수 있다. 두 번째로 집중호우 기간에 도로에서 발생하는 도로의 수막정보를 예측할 수 있는 모형이다. 도로의 수막예측 모델은 기상청에서 제공하는 1시간 단위의 AWS(Automatic Weather System) 자료와 10m 단위의 도로기하구조 정보를 활용하였다. 도로에서의 강우량 추정은 kNN(k-Nearest Neighbors)기법을 활용하여 대상도로와 가장 가까운 AWS 관측소의 강우정보를 각 해당 도로구간에 할당하였다. 현재 본 도로기상 통합모델은 서울시 내부순환로와 올림픽대로에 대해서 실시간 서비스할 수 있도록 생산체계가 구축되었다. 도로기상 통합모델은 우리나라 주요 도로에 적용이 가능하여 하절기의 집중호우로 인한 물이 고인 도로지점과 동절기의 기온강하로 인한 도로의 결빙현상 등 도로노면상태 정보를 실시간으로 서비스할 수 있다. 또한 기상 악화 시 도로를 효율적으로 관리할 수 있는 의사결정 도구로 활용되어 교통재난 및 도로파손을 줄이는데 기여할 수 있을 것이다.
        11.
        2022.04 KCI 등재 서비스 종료(열람 제한)
        Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.