This experiment was conducted to establish the best salting for oyster mushrooms fermented pickles to develop new product and enhance quality for long term preservation. Changes of brine solution and mushroom were investigated during salting 10, 13, 16, 19% for 20 days by raw, blanched and dried type. The pH of the brine solution in the raw and dried mushroom form decreased and increased in the blanched form during storage. There was general increasing tendency of salinity of the brine solution as preservation period increases. The final salinity of mushroom after 20 days was generally lower than initial salinity and moisture content tended to be lowered as the salinity increases. The final hardness of mushroom after 20 days was mostly high in dried type and tended to be lowered in high salinity. The L value on the stand part of mushroom was brighter as the salinity decreases and the b value tended to be lowered as the salinity increases.
다공성 PE (polyethylene) 정밀여과막 지지체 위에 이온교환고분자 물질을 염석법 및 가압법(phase separated and pressurization, PSP)으로 코팅하여 저압용 나노여과막을 제조하였다. 제조한 나노여과막의 코팅유무는 SEM 사진을 통하여 확인하였으며 코팅물질, 코팅시간, 이온세기에 따라 NaCl 100 ppm에서 투과도와 배제율을 측정하였다. PEI와 PSSA_MA의 농도를 동일하게 10,000 ppm으로 하고, 3 atm의 코팅압력을 주어 코팅한 결과, PEI의 투과도는 91.2 LMH, 제거율은 64.6% 이었으며 PSSA_MA의 투과도는 122.7 LMH, 제거율은 38.1%의 결과를 얻을 수 있었다. 본 연구로부터 염석법과 가압법을 통해 복합막 제조가 가능하다는 결론을 얻을 수 있었다.
The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.
Salted Cabbage products purchased from different companies at 4 different districts in South Korea were detected in this study. Cabbage and salt are the main materials for kimchi manufacture. The results of general bacteria contaminated in the samples were 1.4 × 10^5, 6.4 × 10^5, 1.7 × 10^7, 3.6 × 10^7 CFU/g in cabbage and 2.7 × 10³ CFU/g in salt,respectively. The results of coliforms were detected as 2.4 × 10⁴ CFU/g, and there was no Escherichia coli in any sample. Staphylococcus aureus was detected in cabbage as 9.9 × 10², 8.0 × 10¹, and 3.0 × 10³ CFU/g, Bacillus cereus was also found in cabbage as 4.1 × 10³ and 1.0 × 10¹ CFU/g. The results of Campylobacter jejuni and Vibrio paraheamolyticus were 2.4 × 10^6 and 1.0 × 10⁴ CFU/g in cabbage, respectively. 1.0 × 10³ CFU/g for Yersinia enterocolitica was determined in salt. In case of Listeria monocytogenes, the results were 1.5 × 10¹, 1.1 × 10², and 4.5 × 10¹ CFU/g in cabbage. Total batcteria ranged from 1.4 × 10¹ to 4.4 × 10^5 CFU/g were detected in salting solution, from 1.5 × 10⁴ to 1.2 × 10^8 CFU/g in dehydrated salted-cabbage, from 9.4 × 10⁴ ~1.3 × 10^8 CFU/g in minced salted-cabbage. The results of E. coli in samples from different companies were different from one to anther. The results of the contamination of S. aureus and B. cereus showed positive in salting solution and dehydrated salted-cabbage at a portion of companies. V. paraheamolyticus was detected in salting solution. The contamination of Y. enterocolitica ranged from 9.5 × 10² to 1.8 × 10³ CFU/g in salting solution, from 1.7 × 10¹ to 2.7 × 10² CFU/g in dehydrated salted-cabbage, from 1.2 × 10² to 1.3 × 10^8 CFU/g in minced salted-cabbage. The contamination of L. monocytogenes ranged from 8.0 × 10² to 1.7 × 104 CFU/g in salting solution, from 2.8 × 10² to 1.2 × 10⁴CFU/g in dehydrated salted-cabbage. During the manufacture processing of Kimchi, microorganisms were detected in cabbages salted in different concentrations of salt solution at 8%, 10%, 12% and 15% for 5-20 hours. As the results, 3.5 × 10^5 -1.7 × 10^6 , 3.4 × 10^5 - 2.5 × 10^6 , 5.4 × 10^5 - 2.3 × 10^6 , 4.0 × 10^5 - 2.3 × 10^6 CFU/g were detected for E. coli in samples at different treatment conditions. 1.9 × 10⁴- 4.1 × 10⁴, 4.1 × 10³ - 2.8 × 10⁴, 1.5 × 10³ - 7.8 × 10³ , 2.2 × 10⁴- 6.6 × 10⁴CFU/g were detected for S. aureus in samples at different treatment conditions. Salmonella typhimurium was detected in salted cabbage with various salt concentration after salting for 5 hrs, the result ranged from 2.5 × 10^5 to 3.8 × 10^6 CFU/g, and change of microorganism was the smallest in salted cabbage under the concentration of salting solution at 10% for 15 hours. The cabbage salted in 10% salting solution for 15 hours were washed with water for 2 and 3 times, with chlorine for 3 times, and with acetic acid for 3 times. E. coli was detected in the samples washed with water for 2 and 3 times, washed with chlorine for 3 times. The contamination of S. aureus was 3.0 × 10^5 CFU/g in the samples washed with water for 2 times,5.6 × 10³ CFU/g in the samples washed with acetic acid for 3 times, 3.6 × 10^5 CFU/g in the samples washed with water for 3 times and same amount in the samples washed with chlorine for 3 times. According to the results, the contamination of S. aureus was 5.6 × 10³ CFU/g lower in samples washed with chlorine and acetic acid than that in samples washed with water. In case of S. typhimurium, it has been detected in samples washed with water and chlorine, 3.0 × 10¹ CFU/g as the lowest concentration among all the samples was measured in the samples washed with acetic acid for 3 times.
본 연구는 김치제조용 월동배추의 속소금 살포 절임 기계화 작업의 표준화를 위한 것이다. 이를 위해 중대형 김치 공장을 조사하여 속소금 살포에 의한 배추의 기계화 절임의 주요변수를 구하였으며, 그 결과 절임염수 농도, 절임시간, 탈수시간이 주요변수임을 파악하였다. 절임 시 이 변수의 적정값을 구하기 위하여 일련의 실험실 기초실험을 월동배추를 사용하여 수행하였고, 그 실험 결과를 타 계절 배추 절임에 적용 가능성을 확인하기 위하여 타 계절 배추에 대
가지의 수출 경쟁력 향상을 위한 한 방안으로 수출용 가지품종인 축양품종을 염가공품으로 개발하기 위하여 염절임 공정을 최적화하였다. 염절임 시간, 절임온도, 염농도를 독립변수로 하고 절임 후 수분함량, 염도, 표면과 내부의 색도 등을 종속변수로 하여, 중심합성계획법으로 실험을 설계하여 최적조건을 얻고자 하였다. 수립된 이차회귀모형으로 예측식을 수립할 수 있었으며 특히 수분함량이나 염도, 표면과 내부의 L과 b 값에 대하여 높은 적합도를 보여 최적조