본 연구는 정맥의 서식지 관리 및 보전을 위한 기초자료를 제공하고자 수행하였다. 18개의 중점조사지역에서 지형, 서식지 환경을 고려하여 각 지점별로 개발지, 계곡부, 임도 및 능선 3가지 서식지유형으로 총 54개의 고정조사구를 선정하였다. 조사는 2016년부터 2018년까지 겨울철을 제외한 계절별(5월,8월, 10월)로 수행하였다. 서식지 유형별로 관찰된 조류를 자기조직화지도(SOM)를 활용하여 분포 패턴을 분석한 결과, 총 4개의 그룹으로 분류되었다(MRPP, A=0.12, p <0.005). 자기조직화지도 그룹별 종수와 개체수, 종다양도 지수를 비교분석한 결과 종수와 개체수, 종다양도 지수 모두 Ⅲ번 그룹에 가장 높게 나타났다(Kruskal-Wallis, 종수: x2 = 13.436, P <0.005; 개체수: x2 = 8.229, P <0.05; 종다양도: x2 = 17.115, P <0.005). 또한 그룹별 지표종 분석과, 서식지 환경 특성을 파악하기 위해 토지피복도를 랜덤 포레스트 모델에 적용하여 분석한 결과, 4개 그룹간의 서식지환경이 구성하는 비율과 지표종에 차이를 보였다. 지표종 분석은 Ⅱ번 그룹을 제외한 3그룹에서 총 18종의 조류가 지표종으로 확인되었다. 본 연구에서 자기조직화지도 를 활용하여 4개 그룹으로 분류된 결과를 기초로 랜덤 포레스트 모델과 지표종 분석을 적용하였을 때 그룹별 지표종 구성과 그룹별 서식지 특성과 상호 연관성을 보였다. 또한 그룹별 우점하는 서식환경에 따라 관찰된 종의 분포패턴과 밀도가 뚜렷하게 구분이 되었다. 자기조직화지도와 지표종분석, 랜덤 포레스트 모델을 함께 적용한 분석은 서식지 환경에 따라 조류 서식 특징파악에 유용한 결과를 도출할 수 있을 것으로 판단된다.
Self Organizing Map (SOM) is a neural network that is effective in classifying patterns that form the feature map by extracting characteristics of the input data. In this study, we propose an algorithm to determine the cell formation and the machine layout within the cell for the cell formation problem with operation sequence using the SOM. In the proposed algorithm, the output layer of the SOM is a one-dimensional structure, and the SOM is applied to the parts and the machine in two steps. The initial cell is formed when the formed clusters is grouped largely by the utilization of the machine within the cell. At this stage, machine cell are formed. The next step is to create a flow matrix of the all machine that calculates the frequency of consecutive forward movement for the machine. The machine layout order in each machine cell is determined based on this flow matrix so that the machine operation sequence is most reflected. The final step is to optimize the overall machine and parts to increase machine layout efficiency. As a result, the final cell is formed and the machine layout within the cell is determined. The proposed algorithm was tested on well-known cell formation problems with operation sequence shown in previous papers. The proposed algorithm has better performance than the other algorithms.
Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.
The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.
Investigating loci compositions by conventional methods is limited in fully addressing complex gene information. We applied self-organizing map (SOM) to characterize Amplified Fragment Length Polymorphism (AFLP) of aquatic insects in six streams in Japan in responding to environmental variables. Locus band presence patterns were clustered by the trained SOM. Presence and absence data of loci were altered and cluster change through recognition was Subsequently expressed to indicate sensitivity to environmental variables. The outlier loci were determined based on the 90th percentile. Subsequently environmental responsiveness was obtained for each outlier in different species. Outlier loci were overall sensitive to pollutants and feeding material. Poly-loci like responsiveness was detected in adapting to environmental constraints. SOM training combined with recognition could be an efficient means of characterizing loci information without knowledge on population genetics a prior.
The objectives of this research were to determine spatial patterns of fish well and this spatial patterns were closely associated with physical habitat and chemical water quality. Such relations of physical habitat and chemical water quality to high trophic-level biota (i.e., fish) are very complex in analyzing the cause-effective relations due to large ecological dataset, thus an approach of self-organizing map (SOM) has been proposed in elucidating complex ecological relations of aquatic ecosystems. Communities from up-stream to down-stream of Geum River using an approach of Self-Organizing Maps (SOMs) and analyze their relations to water chemistry. For the study, fish and water samplings were conducted in 130 different streams and rivers during 2008 - 2009. The analysis of data using the SOMs model showed that fish community had longitudinal gradients of up-stream, mid-stream and down-stream. The clustering of the trained SOMs units reflected the stream morphology, land-use pattern and water quality, resulting in influenced the ecological trophic compositions and tolerance of top-level fish in the aquatic ecosystem
This study examined the effects of environmental factors on the abundance of black pine bast scale (BPBS), Matsucoccus thunbergianae Miller and Park, in coastal disaster prevention forest stands composed mostly of Japanese black pine. Geographical factors, soil conditions and forest stand conditions were measured to evaluate the hazard rating for the occurrence of BPBS from 35 plots in the coastal forest stands. To assess the hazard rating, a combination of a self-organizing map (SOM), which classified the samples according to their characteristics, and a random forest model, which predicted the probability of the occurrence of BPBS from SOM results, was used in this study. Our results showed that major factors determining the abundance of BPBS were climate, tree size, and tree health. BPBS was more common in low latitude coastal forests, suggesting that warmer conditions were favorable to BPBS population buildup. Tree size also influenced the abundance of BPBS, which was higher in forests composed of larger trees (greater DBH). Finally, BPBS was also more abundant in areas with high soil salinity and clay-loam soil, and north-facing slopes where tree vigor was lower.
Benthic macro invertebrate communities were collected at six different sampling sites in the Musucheon stream in Korea from July 2006 to July 2007, and ecological exergy values were calculated based on five different functional feeding groups (collector-g
본 연구는 우리나라 서해안에서 월동하는 수조류 군집의 특성 및 환경요인에 따른 분포 특성을 밝히고자 수행되었다. 수조류 군집조사는 10개 지역에서 실시되었으며, 환경요인으로 토지피복도 비율을 측정하였다. 전체 조사지역에서 종 구성은 수면성 오리류가 84%로 가장 높은 비율을 나타냈고, 그 외 잠수성 오리류, 섭금류, 기러기류, 갈매기류 등이 많이 관찰되었다. 가장 높은 우점도를 나타낸 종은 청둥오리(Anas platyrhynchos)였으며 다음으로 가창
지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 7 × 6 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.
인공신경망 이론을 이용하여 강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구들은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 이와 같은 패턴분류를 위한 SOM(Self-Organizing Map: SOM)의 연구 결과를 검토해보면 SOM 훈련을 위한 지도크기 및 배열의 결정은 SOM 성능에 큰 영향을 미치는 것으로 보고되고 있으나 지도크기 결정시 지도의 종방향 크기와 횡방향 크기를
The marine self-organizing VHF data link is a digital radio link with self-organizing ability, which exploits the STDMA algorithm and operates in marine VHF channels. It can support the applications of surveillance, situation awareness and communication. It is the core technology of the Universal AIS which is considered as a future surveillance system at sea by the IMO. In this paper, the operational principle of the marine self-organizing VHF data link is introduced. Simultaneously, a new access protocol is proposed to enhance the marine self-organizing VHF data link so as to support point-to-point communication. The point-to-point communication is one of the most important bases to establish dynamic internetworks among computers on the bridges in the future.