검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 384

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explored effects of a sludge-based biochar addition on nitrogen removal of membrane bioreactor (MBR) for wastewater treatment. The membrane fouling reduction by the biochar addition was also investigated. A dose of 3 g/L of the biochar was applied to an MBR (i.e., BC-MBR) and treatment efficiencies of organic matter and nutrient were analyzed. The MBRs with powdered activated carbon (i.e., AC-MBR) and without any additives were also operated in parallel. The average removals of COD and TN were improved with the biochar addition compared to those with the control MBR. Interestingly, operational duration was also increased with biochar addition. The CLSM analysis revealed that biomass amounts of BC-MBR and AC-MBR were reduced by more than 40%, and thickness of the biofilm attached to the membrane surface also was decreased. The physical properties of biochar surfaces were compared with a commercial powdered activated carbon. The specific surface area with 38 m2/g and pore volume with 0.13 cm3/g of the biochar were much smaller than those of the powdered activated carbon, which were 1100 m2/g and 0.67 cm3/g, respectively. Manufacturing conditions for the biochar production needs to be further investigated for enhancing physical properties for adsorption and biological improvement.
        4,500원
        2.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The intensive development of the petrochemical industry globally reflects the necessity of an efficient approach for oily sludge and wastewater. Hence, for the first time, the current study utilized magnetic waxy diesel sludge (MWOPS) to synthesize activated carbon coated with TiO2 particles for the removal of total petroleum hydrocarbons (TPH) and COD from oily petroleum wastewater (OPW). The photocatalyst was characterized using CHNOS, elemental analysis was performed using X-ray fluorescence spectroscopy (XRF), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FTIR), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), MAP thermo-gravimetric analysis/ differential thermo-gravimetric (TGA–DTG), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The optimization of synthesized highly porous AC/Fe3O4/TiO2 photocatalyst was conducted considering the impacts of pH, temperature, photocatalyst dosage, and UVA6W exposure time. The results demonstrated the high capacity of the MWOPS with inherent magnetic potential and desired carbon content for the removal of 91% and 93% of TPH and COD, respectively. The optimum conditions for the OPW treatment were obtained at pH 6.5, photocatalyst dosage of 250 mg, temperature of 35 °C, and UVA6W exposure time of 67.5 min. Moreover, the isotherm/kinetic modeling illustrated simultaneous physisorption and chemisorption on heterogeneous and multilayer surfaces. Notably, the adsorption efficiency of the AC/Fe3O4/TiO2 decreased by 4% after five adsorption/desorption cycles. Accordingly, the application of a well-designed pioneering photocatalyst from the MWOPS provides a cost-effective approach for industry manufacturers for oily wastewater treatment.
        5,400원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There are two primary sludge drying methods such as the direct heating microwave method and the indirect heating steam one. In this study, the drying treatment facility at sewage treatment plant A applied both of these drying methods. The research aimed to investigate the optimal operation approach for the drying facility, considering the input sludge and the moisture content data after the drying process. Moisture content and removal rate data were executed at the research facility from January 2016 to December 2018. First, the microwave, a direct heating drying method, performed intensive drying only on the outer surface of the sludge by directly applying heat to the sludge using far infrared rays, so effective sludge drying was not achieved. On the other hand, the steam method of the indirect heating method used steam from a gas boiler to maximize the utilization of the heat transfer area and reduce energy of the dryer, resulting in an effective sludge drying efficiency. The sludge moisture content brought into the sludge drying facility was about 80%, but the moisture content of the sludge that went through the drying facility was less than 10% of the design standard. Therefore, the steam method of the indirect heating method is more effective than the microwave method of the previous direct heating method and is more effective for maintenance It has proven that it is an efficient method of operating construction facilities.
        4,000원
        4.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is to manufacture a titanium dioxide (TiO2) photocatalyst by recycling sludge generated using titanium tetrachloride (TiCl4) as a coagulant. Compared to general sewage, a TiCl4 coagulant was applied to dyeing wastewater containing a large amount of non-degradable organic compounds to evaluate its performance. Then the generated sludge was dried and fired to prepare a photocatalyst (TFS). Scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and nitrogen oxide reduction experiments were conducted to analyze the surface properties and evaluate the photoactive ability of the prepared TFS. After using titanium tetrachloride (TiCl4) as a coagulant in the dyeing wastewater, the water quality characteristics were measured at 84 mg/L of chemical oxygen demand (COD), 10 mg/L of T-N, and 0.9 mg/L of T-P to satisfy the discharge water quality standards. The surface properties of the TFS were investigated and the anatase crystal structure was observed. It was confirmed that the ratio of Ti and O, the main components of TiO2, accounted for more than 90 %. As a result of the nitric oxide (NO) reduction experiment, 1.56 uMol of NO was reduced to confirm a removal rate of 20.60 %. This is judged to be a photocatalytic performance similar to that of the existing P-25. Therefore, by applying TiCl4 to the dyeing wastewater, it is possible to solve the problems of the existing coagulant and to reduce the amount of carbon dioxide generated, using an eco-friendly sludge treatment method. In addition, it is believed that environmental and economic advantages can be obtained by manufacturing TiO2 at an eco-friendly and lower cost than before.
        4,000원
        7.
        2024.04 구독 인증기관·개인회원 무료
        최근 생활방식의 변화로 인하여 실내 생활이 점점 증가함에 따라 다양한 인테리어 자재의 수요가 증가하고 있으며, 이에 따라 인테리어 스톤 제품 생산 과정에서 발생하는 산업 폐기물인 슬러지의 발 생도 더불어 증가하고 있다. 발생하는 슬러지는 전량 소각 및 매립되어 처리되고 있으며 환경파괴 및 매립지 부족 등의 문제로 슬러지 처리에 어려움을 겪고 있는 실정이다. 이와 더불어 최근 건설 현장의 골재 수급은 매우 어려운 상황이며 이는 직접적으로 레미콘의 품질 및 가격에 영향을 미치게 된다. 이 러한 문제점의 해결을 위하여, 본 연구에서는 모르타르 내부의 잔골재를 인테리어 스톤 슬러지로 치환 하여 슬러지의 친환경적 재활용성을 검토하고자 하였다. 선행 연구를 바탕으로 시멘트, 슬러지, 잔골 재, 고유동화제 등을 활용하여 배합비를 설정하였으며, 이에 대한 시험체를 제작 하였다. 잔골재 무게 대비 슬러지는 각각 5, 10, 15, 20%를 치환하였으며, 각 배합에 대한 유동성과 재령별 압축강도를 측 정하였다. 관입저항 실험을 통해 각 시편의 초결과 종결 시간을 확인하였으며 수은압입법을 통해 시편 별 내부의 공극을 측정하였다.
        8.
        2024.04 구독 인증기관·개인회원 무료
        This research investigates the incorporation of eco-friendly materials, namely fly ash and artificial interior stone sludge into cement grouts. The study aims to establish the correlation between the microstructural properties and the compressive strength, providing a comprehensive behavior of fly ash and artificial interior stone (AIS) sludge on the cement grouts. A multifaceted experimental approach encompassing compressive strength testing, mercury intrusion porosimetry, thermogravimetric analysis, and scanning electron microscopy is employed. The result indicated that incorporating fly ash and artificial interior stone sludge into cement grouts led to a reduction in the porosity and refinement of the pore size. The thermogravimetry analysis revealed a notable impact of fly ash and artificial interior stone sludge on hydration and phase transition. The scanning electron microscopy findings of the microstructural enhancement confirmed that the combined incorporation of fly ash and AIS sludge densified the structure.
        9.
        2023.11 구독 인증기관·개인회원 무료
        In order to establish disposal plans for sludge, which is one of the untreated waste materials from domestic nuclear power plants, it is necessary to determine the radioactivity concentration of radioactive isotopes. In this study, we aim to evaluate the gross alpha radioactivity of sludge containing radioactive contaminants after pre-treatment, in order to assess the level of sludge waste and obtain analytical data for discussing disposal methods. Samples of sludge generated from nuclear power plants were pre-treated, solutionized, and prepared as analysis samples for evaluating the gross alpha radioactivity.
        10.
        2023.11 구독 인증기관·개인회원 무료
        Typically, the bottom of the effluent treatment facility at a nuclear power plant contains sediment, which is low-contamination waste consisting of sludge, gravel, sand, and other materials from which radioactive contaminants have been removed. Among these sediments, sludge is an irregular solid form consisting of small particles that are coagulated together, with radioactive isotopes containing cobalt attached. Currently, there is a record of disposing of dry active waste from domestic nuclear power plants, and efforts are underway to gather basic data for the disposal of untreated waste such as sludge, spent filter, and spent resin. In particular, the classification and disposal methods of waste will be determined based on the radioactivity concentration. Therefore, plans are being made to determine the radioactivity concentration of radioactive isotopes and establish disposal plans for sludge samples. In this study, pre-treatment and solutionization were carried out for the analysis of radioactive isotopes in sludge sampels from nuclear power plants. The deviation of the gamma radioisotope analysis results was derived to obtain an optimal sample quantity that represents the sludge.
        11.
        2023.11 구독 인증기관·개인회원 무료
        When dismantling a power plant, a large amount of radioactive tanks are generated, and it is estimated that a significant amount of sludge will accumulate inside the tanks during long-term operation. In the process of dismantling a radioactive tanks, it is important to know the composition of the sludge because the sludge present inside must first be removed and then disposed of. In the case of certain tanks, it can be predicted that corrosion products generated due to system corrosion are the main cause of sludge formation. However, in the case of some tanks, it is not easy to predict the sludge composition because various dispersed particles in addition to corrosion products may be mixed with the wastewater. Even if it is collected and analyzed, the sludge composition can change significantly depending on the operation history, so the analysis results cannot be considered representative of the composition. In the case of LHST, surfactant components introduced during the washing and shower process, oil components and dispersed particles dissolved by the surfactant accumulate inside the tank, making sludge difficult to remove. In addition, even if it is removed by ultra-high pressure spraying, unexpected problems may occur in the subsequent treatment process due to the surfactant contained therein. Therefore, it is necessary to analyze in more detail the characteristics of sludge accumulated in LHST and prepare countermeasures. A test procedure was prepared to evaluate the characteristics of sludge accumulating in LHST. According to the test results, the long-term sludge accumulation tendency of the LHST is summarized as follows. ① Initially, the sludge settling speed increases slowly until a surface sludge layer is formed. ② After the surface sludge layer is formed, the sludge rapidly settles until the sludge layer becomes somewhat thicker. ③ When the sludge layer is formed to a certain extent, the sludge escape rate increases and the sludge accumulation rate decreases again. It is assumed that the sludge escape speed is closely related to the fluid flow speed in the relevant area. It is believed that the combined effect of these phenomena will determine the thickness of the sludge layer that will accumulate inside the tank, but it was not possible to evaluate how much the sludge layer would accumulate based on the experimental results alone. However, it can be assumed that significant sludge accumulation occurred in areas where fluid flow was minimal and sludge formation nuclei easily accumulates.
        14.
        2023.05 구독 인증기관·개인회원 무료
        To analyze the activity concentration of radionuclides in radioactive sludge samples generated from low- and intermediate-low-level radioactive waste from domestic nuclear power plant, a pretreatment process that dissolves and homogenizes the sample is essential. However, this pretreatment process requires the use of hydrofluoric acid, which makes analysis difficult and challenges users to handle harmful chemicals. Therefore, we aim to minimize the use of hydrofluoric acid by measuring gamma nuclides in the sludge sample without pretreatment process and compare the differences of measurement results according to the sample matrix with and without pretreatment process. We will collect about 0.1 g of the sludge sample, and dissolve it using an acid treatment process after using microwave decomposition. We will then use gamma spectroscopy to check the concentration of nuclides present in the sludge before and after dissolution and consider the effect of the sample matrix.
        15.
        2023.05 구독 인증기관·개인회원 무료
        Various types of tanks are used in nuclear power plants, and sludge composed of various organic substances and inorganic oxides contaminated with radioactive materials may be present at the bottom of a tank of a radioactive waste treatment device. In addition, glassy and fixative oxide contamination layers are accumulated on the inner wall of the tank depending on the tank material, usage and degree of oxidation. Such contaminated sludge is the main cause of radiation exposure to workers when dismantling nuclear power plant tanks. In addition, the waste filters generated by filtration of contaminated sludge is treated as secondary radioactive waste, and this radioactive waste not only occupies a lot of disposal space, but also the disposal cost is continuously increasing. Therefore, it is necessary to develop a technology that does not generate waste filters as much as possible. To solve this problem, NILEPLANT Co., Ltd. registered a patent named “Filtering apparatus” based on previous research and manufactured a rotary filtration membrane device through detailed design. The rotary filtration membrane device is composed of three or more multiple rotary filtration membranes, and can remove fine particles in wastewater as well as sludge accumulated inside a radioactive contamination tank. In addition, considering the site characteristics of special conditions such as nuclear power plants, it was designed to show excellent performance in removing fine particles while minimizing the area where the device is installed. The rotary filtration membrane device is designed and manufactured as a double cylinder structure that combines a hydro cyclone filter type body and an inner partition wall, and is equipped with a filter cloth-based rotary cylinder filter to process sludge through the filter cloth in addition to inertial. In addition, the patented principle enables self-backwashing without stopping the filtration process, extending the life of the filter and minimizing waste filters. The filtration performance, self-backwashing function, and sludge behavior of the rotary filtration membrane device manufactured based on the detailed design were evaluated through experiments, and improvements to obtain more effective filtration performance were derived. Accordingly, it is expected that the more improved rotary filtration membrane device can be effectively used to remove sludge generated during the dismantling of nuclear power plants in the future.
        16.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.
        4,500원
        17.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The anaerobic digestion process produces methane while stabilizing sludge. As of 2020, 62 anaerobic digesters in public wastewater treatment plants are operational in Korea. Many researchers have studied to improve digester performance. Thermal hydrolysis technology is one of the pre-treatment methods for treating sludge. Reduced retention time and enhanced biogas production are the main advantages of sludge disintegration at relatively high temperatures and pressures. But nutrients like nitrogen and phosphorus are released from the pre-treated sludge. Phosphorus is a non-renewable resource that is essential to food production. Wastewater receives 20% of the total phosphate discharge, while 90% of the influent phosphorus load is in sludge. For efficient phosphorus recovery, it is essential to comprehend the phosphorus release characteristics during wastewater treatment, including anaerobic digestion. Biological or chemical processes can achieve phosphorus removal to comply with the effluent discharge limits regulations. The three primary sources of phosphorus in sludge are aluminum-bound phosphorus (Al-P), polyphosphate in phosphorus-accumulating organisms (PAOs), and iron-bound phosphorus (Fe-P). Anaerobic digestion is the typical method for recovering carbon and phosphorus. However, previous research has demonstrated that most phosphorus in anaerobic digestion occurs as a solid phase coupled with heavy metals. Therefore, the poor mass transfer rate results in a slow phosphorus release. Due to the recent growth in interest and significance of phosphorus recovery, many researchers have studied to improve the quantity of phosphorus released into the liquid phase through chelation addition, process operation optimization, and disintegration using sludge pre-treatment. The study aims to investigate characteristics of the phosphorus release associated with the thermal hydrolysis breakdown of sludge and propose a method for recovering phosphorus in a wastewater treatment plant. When solubilizing sludge using thermal hydrolysis pre-treatment, organic phosphates, inorganic phosphates, and polyphosphates are converted into ortho-phosphate. Therefore, applying thermal hydrolysis, anaerobic digestion, and phosphorus recovery processes (struvite formation or microbial electrolysis cells) can recover carbon and phosphorus.
        4,200원
        18.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, to improve the quality and construction performance of backfill materials for road excavation and restoration, the basic properties of rapid-hardening materials and stone sludge are analyzed to propose an optimal mix design. METHODS : To utilize rapid-hardening materials and stone sludge as controlled low-strength materials for pipeline construction in downtown areas, specimens were prepared for each compounding condition of fast-hardening materials. Flow, slump, and compressive strength tests were performed at various setting times. Subsequently, the physical and mechanical characteristics of the rapid-hardening backfill material for each mixing factor were analyzed. RESULTS : When ultrafast hardening cement and stone sludge are used, a setting time exceeding 30 min is required for a water–binder (W/B) ratio of 200% or higher. Considering the economic feasibility of ultrafast hardening cement, a W/B of 300% is considered the most suitable when high-performance superplasticizer and retarders are mixed. A flow test was performed on the rapid-hardening backfill material and the results show that if the mixing time exceeds 10 min, then the fluidity decreases rapidly, which necessitates a higher amount of superplasticizer. When ultrafast hardening cement is used, the initial strength (based on 4 h) is 0.7 MPa or higher for all formulations at a W/B ratio of 300%, and the compressive strength decreases slightly as the amount of superplasticizer is increased by 0.1%. CONCLUSIONS : Based on the fluidity and strength of the backfill material, which is composed of a rapid-hardening material and stone sludge, the most optimal performance is achieved when ultrafast-hardening cement with a W/B ratio of 300% is used in addition to a highperformance fluidizing agent 0.3% (wt./B) and retarder 0.2% (wt./B).
        4,000원
        19.
        2022.10 구독 인증기관·개인회원 무료
        In nuclear power plant, there were many contaminated tanks dispose of radioactive fluid waste. These tanks are made of stainless-steel, and corrosion can occur when tanks are exposed to radioactive fluid waste containing moisture for a long time. Therefore, those sludge waste including radionuclide should be collected, solidified, and disposed of. If sludge can be melted, sludge can be easily solidified. However, melting points of sludge components (Fe2O3, NiO, Cr2O3) are very high as 1565, 1955, and 2435 , respectively. Therefore, melting sludge is difficult. If a solidification auxiliary material such as cement or asphalt is used to help solidify, solidification can easily occur, but cement and asphalt are vulnerable to heat. Vitrification using glass material can be solidification method, but the waste loading ratio of glass material is higher than 50%. High waste loading ratio is weakness in terms of volume reduction of waste. In this study, ferro frit powder (Na2O, K2O, CaO, Al2O3, B2O3, SiO2, ZnO) is used as solidification auxiliary material. When ferro frit powder mixed with sludge material are melted in sludge material, melted ferro frit powder can stick sludge material and can solidify sludge material without melting. Sludge can be solidified by using ferro frit powder with a smaller waste loading ratio than the vitrification method. However, since the waste loading ratio of the solidification auxiliary material is small, if ferro frit powder is not uniformly distributed between sludge powder, solidification may not be performed properly. Although the mixing ratio between sludge and ferro frit in solidified sludge is same, when the distribution of ferro frit powder in sludge is non-homogeneous, the difference in chemical and physical characteristics as compressive strength and leaching resistance can be observed in solidified sludge. As the ferro frit mixing ratio in the site where ferro frit exists was relatively high, the melting point of the mixed powder (sludge+ferro frit) decreased, and the mixed powder could not maintain its shape and melted. In the case of the area where ferro frit does not exist, since only the stainless-steel oxide sludge exists, sludge was not melted, and the shape was maintained. However, it was confirmed that the leaching resistance was lowered by visually observing the color change of the leachate within a short period of time (about 2 hours) when solidified sludge was immersed in the leachate.
        1 2 3 4 5