검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        5.
        2023.11 구독 인증기관·개인회원 무료
        The types of fuel loaded and burned in domestic nuclear power plants are WH-type and OPR/ APR-type nuclear power plants, with a total of 19 types. In the case of spent nuclear fuel released in Korea, the low combustion level of 45,000 MWD/MTU or less accounts for about 75%. In terms of fuel type, WH 17×17 and CE 16×16 fuels account for about 85% of all spent nuclear fuels. The thickness of the oxide film of the fuel cladding can make the fuel rod vulnerable during reactor operation, directly affecting the integrity of the fuel rods. so, it is a very important design factor in design. Therefore, the fuel rod design code that predicts and evaluates this has also been developed to accurately predict fuel rod corrosion. And it’s being applied to the design. In this study, the ECT probe measured by inserting it between fuel rods. The thickness of the fuel cladding oxide film was measured for spent nuclear fuel. When reloading operational nuclear fuel, the IAEA recommends an oxide film thickness of up to 100 micrometers. In this study, it was confirmed that spent nuclear fuels keeping integrity burned for 2-3 cycles were sufficiently maintained within the limit. However, the difference could be confirmed according to the characteristics of the coating material, the combustion cycle, and the use of poison rods. For the reliability of the data, symmetrical to the quadrant fuels were selected, and the fuel burned at the same period was measured. The method of selecting the target fuel can produce meaningful results.
        6.
        2023.05 구독 인증기관·개인회원 무료
        Korean MMTT project has been launched in order to clarify the vibration and shock loads under normal condition and transportation (NCT) in Korean geological and transportation conditions and to evaluate the integrity of SNF under such a transportation load. To evaluate the integrity of the SNF during normal land and sea transport tests, a representative SNF that represents the entirety of the different types of SNFs stored in the spent fuel pool of the power plant should be selected. And, it is necessary to make the test assembly to have a statically and dynamically similar behavior with the actual SNF. Therefore, in this project, we selected two types of fuel assembly that are expected to exhibit relatively conservative behavior under NCT, and these assemblies are being fabricated into surrogate test assemblies to have a similar characteristic as actual SNF based on the accumulated data from the poolside examination and the hot cell test so far. Tests were conducted for NCT conditions. In addition, a fatigue test was performed to integrity of the nuclear fuel rods under NCT conditions. Nuclear fuel assemblies are transported while being laid inside the cask under NCT, and are exposed to external shocks and vibrations. At this time, the fuel rod between the grid and grid is exposed to bending motion by this external force. For this simulation, a fixture was developed and used for static bending tests and bending fatigue tests. To simulate spent nuclear fuel rod specimens, hydrogen reorientation Zry-4 cladding was used and simulated pellets made of stainless steel were applied. And also, it was bonded using epoxy to give bonding conditions between the inside and the pellet. As a result of the test, cracks occurred due to the concentrated load between the pellets, resulting in damage to the fuel rod. The fatigue results showed a similar trend compared to the results performed by ORNL, and the lower bound fatigue curve presented by NUREG-2224 was also satisfactory.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Spent nuclear fuel (SNF) characterization is important in terms of nuclear safety and safeguards. Regardless of whether SNF is waste or energy resource, the International Atomic Energy Agency (IAEA) Specific Safety Guide-15 states that the storage requirements of SNF comply with IAEA General Safety Requirement Part 5 (GSR Part 5) for predisposal management of radioactive waste. GSR Part 5 requires a classifying and characterizing of radioactive waste at various steps of predisposal management. Accordingly, SNF fuel should be stored/handled as accurately characterized in the storage stage before permanent disposal. Appropriate characterization methods must exist to meet the above requirements. The characterization of SNF is basically performed through destructive analysis/non-destructive analysis in addition to the calculation based on the reactor operation history. Burnup, Initial enrichment, and Cooling time (BIC) are the primary identification targets for SNF fuel characterization, and the analysis mainly uses the correlation identified between the BIC set and the other SNF characteristics (e.g., Burnup - neutron emission rate) for characterizing. So further identification of the correlation among SNF characteristics will be the basis for proposing a new analysis method. Therefore, we aimed to simulate a SNF assembly with varying burnup, initial enrichment, and cooling time, then correlate other SNF properties with BIC sets, and identify correlations available for SNF characterization. In this study, the ‘CE 16×16’ type assembly was simulated using the SCALEORIGAMI code by changing the BIC set, and decay heat, radiation emission characteristics, and nuclide inventory of the assembly were calculated. After that, it was analyzed how these characteristics change according to the change in the BIC set. This study is expected to be the basic data for proposing new method for characterizing the SNF assembly of PWR.
        8.
        2023.05 구독 인증기관·개인회원 무료
        The spent fuel is classified based on the arrangement of fuel rods, which is considered the primary characteristic data for selecting nuclear fuel. The reason for prioritizing the classification by fuel rod arrangement is that it has the greatest physical impact on the production, supply, operation, reactor type, rack size within the containment vessel, and specifications for the basket in the future dry storage system. Additionally, as mentioned earlier, various meanings of nuclear fuel types are distinguished according to the arrangement of fuel rod. The burnup and cooling period ranges are also important factors in the characterization analysis for the selection of spent fuel, the burnup range was set for both low and high burnup ranges and the cooling period is necessary to consider the reliability during handling of nuclear fuel thermal distribution within the storage system
        9.
        2023.05 구독 인증기관·개인회원 무료
        Nuclear inspection is necessary to verify nuclear activities. If North Korea takes denuclearization, North Korea’s nuclear materials should be verified through non-destructive testing and destructive testing for nuclear material production. Since destructive testing of all substances is impossible, nondestructive testing is essential. Most non-destructive tests are performed by measuring the energy of gamma rays, but the characteristics of nuclear fuel can be evaluated by measuring neutron sources when enclosed with thick shields and when shielding structures are difficult to remove. Before the neutron source evaluation of MAGNOX used by North Korea, the relative characteristics will be evaluated later by analyzing the burnup, enrichment, and cooling time of the spent nuclear fuels discharged from the domestic nuclear power plant. This study evaluated the source strength and major nuclides according to burnup for the WH17×17 nuclear fuel assembly. The depletion calculation was conducted using SCALE 6.2 ORIGEN, and 3.5wt% enrichment, 10, 20, 30, 40, 50, 60 MWd/kg burnup, and five years cooling time, the minimum requirement for transport specified in the notice of the Nuclear Safety Commission, was applied. Although the impact assessment on enrichment should be evaluated with MCNP Tally to consider the fission reaction of the generated neutrons, this study only evaluated the spontaneous fission and (a, n) reactions that occurred first because it only evaluates the burnup impact. As burnup increased, neutron generation increased, and most of the total neutron strength occurred through spontaneous fission from the 10 MWd/kg burnup step. The influence of Pu-240 nuclides was dominant in the 10 MWd/kg burnup step but most neutrons were generated in tiny amounts of Cm- 244 generated from 20 MWd/kg burnup. Since DPRK’s 5 MWe Yongbyon MAGNOX has very low burnup (about 0.7 MWd/kg), the primary neutron sources of 10 MWd/kg, Am-241 and Pu isotopes, especially Pu-240, are expected to be used as indicators for evaluating spent nuclear fuel characteristics. If only specific nuclides are evaluated as major neutron sources at lower burnup than those evaluated in this study, in that case, the accuracy of non-destructive testing can be improved. Additionally, the evaluation according to the enrichment and cooling time should be considered as well.
        10.
        2022.10 구독 인증기관·개인회원 무료
        Since SMR’s reduced reactor radius results in higher neutron leakage, SMR operates at a relatively lower discharge burnup level than traditional Light Water Reactors (LWRs). It may result in larger spent fuel amounts for SMRs. Furthermore, recent studies demonstrated that NuScale reactor will generate a significantly higher volume of low- and intermediate-level waste owing to components located near the active core including the core barrel and the neutron reflector. For spent nuclear fuel simulation, FRAPCON-4.0 was updated. Major modifications were made for fission and decay gas release, pellet swelling, cladding creep, axial temperature distribution, corrosion, and extended simulation time covering from steady-state to dry storage. In this study, typical 17×17 PWR fuel (60 MWd/kgU) and NuScale Power Module (36 MWd/kgU) was compared. NuFuel-HTP2™ fuel assembly, which has a half-length of proven LWR fuel, was employed. Owing to the lower discharge burnup and operating temperature, the maximum hydrogen pickup was 73 wppm and the maximum hoop stress was ~25 MPa. Therefore, hydride reorientation issue is irrelevant to SMR spent fuel. In this context, the current regulatory limit for dry storage (i.e. 400°C and 90 MPa) can be significantly alleviated for LWR-based SMRs. The increased safety margin for SMR spent fuel may compensate high spent fuel management cost of SMRs incurred by an increased amount. The comprehensive analysis on SMR spent fuel management implications are discussed based on simulated SMR fuel characteristics.
        11.
        2007.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료의 건식 재가공을 위한 핵연료 원격 제조공정중 분말제조를 위한 산화 및 OREOX(산화 환원공정)열처리 공정으로부터 및 핵분열기체의 방출거동을 정량적으로 평가하였다. 특히 사용후핵연료의 평균 연소도가 범위내에서 연소도 변화에 따른 핵분열기체의 방출 분율은 측정한 실험결과와 ORIGEN 코드로부터 계산된 초기 inventory를 상호 비교하여 구하였다. 1차 산화공정(voloxidation)에서 및 의 시간에 따른 방출거동은 핵연료의 으로의 분말화 정도와 밀접한 관련이 있는 것으로 보이며, 입계(grain-boundary)에 분포된 핵분열기체가 대부분 방출되는 것으로 여겨진다. 산화분말을 이용한 OREOX 공정으로부터 핵분열기체의 높은 방출율은 의 환원공정에서 온도 증가에 의한 기체 확산 및 으로의 환원에 의한 U 원자 이동성 증가에 의존하며 주로 inter-grain 및 intra-grain에 분포된 핵분열기체가 방출된 것으로 판단된다. 일차 산화공정시 및 핵분열기체의 방출 분율은 핵 연료 연소도가 증가함에 따라 높게 나타났고 방출 분율 범위는 총 inventory의 정도며, 산화분말의 OREOX 공정처리시 잔류 핵분열기체 대부분이 방출되는 것으로 보인다. 아울러 사용후핵 연료로부터 핵분열기체의 제거를 위해서는 고온 환원분위기보다는 산화에 의한 분말화가 더 효과적인 것으로 여겨진다.
        4,600원
        12.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        방사선물질을 수송하기 위한 용기는 가상 사고조건에서도 안전해야만 한다. 운반용기 설계요구조건은 실험 및 유한요소 해석을 통해 구조적 건전성을 확보하여야 한다. 최근에는 실험보다 유한요소해석을 이용한 방법이 상대적으로 비용이 적기 때문에 주로 사용된다. 그러나 기계적인 반응이 복잡하기 때문에 프로그램을 적용하는 사용자의 방법에 의해 결과가 결정되고 해석하는 동안 여러가지 문제를 발생시킬 수 있다. 본 논문에서, 유한요소해석은 LS-DYNA3D와 ABAQUS/Explicit을 이용하여 운반용기의 9m 자유낙하충격실험에 대한 해석기술과 여러가지 손상을 갖는 경우를 발견하기 위해 연구하였다. 운반용기의 각각의 경우를 비교하고 사용후 핵연료 운반용기의 낙하 실험에 대해서 신뢰할 수 있는 비교적 간단한 해석 기술을 제안하였다.
        4,000원