검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,906

        105.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel ionic liquid-functionalized carbon quantum dots (IL-CDs) were prepared by hydrothermal method, and characterized with FT-IR, TEM and XPS. The IL-CDs exhibited narrower particle size distribution with more uniform dispersion and the surface potential changes from negative to positive due to the function of IL. IL-CDs could be quenched (“turned off”) after adding ascorbic acid (AA), and as an “on–off”, fluorescent probe could be established for direct analysis AA. The linear range of AA was 0.34–30.00 μg/mL and the LOD was 0.11 μg/mL. The method was successfully applied to the determination of AA in real samples with satisfactory results.
        4,000원
        106.
        2023.03 구독 인증기관 무료, 개인회원 유료
        본 연구는 코팅 방법을 활용한 단결정 양극 소재 연구로서 Ni-rich계 다결정 양극 소재로 부터 단결정 양극 소재를 합 성하여 사이클 구동 시 양극 소재의 안정성을 향상시키고자 한다. 양극 소재에 LixCoO2와 LixSnO3 를 각각 코팅하여 이차입자 내부 혹은 외부에 코팅층이 형성된 양극 소재를 합성한 후 이를 소결하여 단결정 형성에 대한 영향을 비교 하였다. 입자 외부에 LixSnO3가 코팅되어 열처리 된 Ni0.8Co0.1Mn0.1O2(NCM811)의 경우 코팅 처리 없이 열처리된 양극 소재 보다 개선된 수명특성을 보였으나, 단결정화가 이뤄지지 않았다. 입자 내부에 LixCoO2 코팅층이 형성된 NCM811 을 열처리 한 결과 이차입자 내부에 형성된 Co 코팅층이 결정화되어 50회 사이클 후 기준 단결정 양극 소재의 방전용 량인 117.34 mAh·g-1 대비 129.11 mAh·g-1의 높은 방전용량을 나타내었고, 형상제어를 통해 이성적인 단결정화가 이뤄 졌다. 본 연구는 다결정체인 Ni-rich 양극소재의 단결정화에 대한 유요한 통찰력을 제공할 것으로 예상한다.
        4,000원
        107.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 PET를 재활용하여 만든 물질재생 PET사를 함침공정을 통해 고전도성의 E-textile로 제작하는 것이다. 소수성의 성질을 가지고 있는 PET사는 virgin과 recycled 모두 함침공정을 통해 전자섬유로 제작되었을 때에 높은 전도성을 부여하기 힘들다는 특징이 있다. 함침공정의 효율성 향상을 위해 FEMTO SCIENCE사의 Covance-2mprfq 모델을 사용하여 재생 PET사로 이루어진 시료를 50w 5분, 10분간 플라즈마로 표면 개질하였다. 이 후 SWCNT 분산액(.1wt%, cobon 사)에 5분간 시료를 담근 후 패딩기(Padder, DAELIM lab)를 통해 시료 안쪽으로 용액이 잘 스며들도록 Dip-coating 진행하였다. 공정이 완료된 후 저항측정을 양끝점에서 멀티미터를 통해 측정하 고 좀 더 넓은 전극을 통해 정밀하게 다시 측정하였다. 고찰한 결과 플라즈마 표면 개질을 통해 함침공정을 통한 고전도성 부여가 가능해졌음을 확인할 수 있었다. 10분간 표면 개질한 경우 저항이 최대 2.880배 감소하였다. 본 연구결과를 기반으로 스마트 웨어러블 분야에서 활용되는 E-textile 또한 recycle 소재로 제작함으로써 석유자원을 절약하고 탄소배출량을 감소시킬 수 있는 스마트 웨어러블 제품을 개발하고자 한다.
        4,000원
        108.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surface of carbon films deposited with inverted plasma fireballs is analysed in this paper. Measurements were conducted with Raman spectroscopy, atomic force microscopy and nanoindentation. The latter was used to obtain Young’s modulus as well as Martens and Vickers hardness. The roughness of the film was measured by atomic force microscopy and its thickness was measured. It was shown with Raman spectroscopy that the films are homogeneous in terms of atomic composition and layer thickness over an area of about 125 × 125 mm. Furthermore, it was demonstrated that inverted plasma fireballs are a viable tool for obtaining homogeneous, large area carbon films with rapid growth and very little energy consumption. The obtained films show very low roughness.
        4,000원
        109.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Removing CO2 gas to address the global climate crisis is one of the most urgent agendas. To improve the CO2 adsorption ability of activated carbon, nitrogen plasma surface treatment was conducted. The effect of nitrogen plasma treatment on the surface chemistry and pore geometry of activated carbon was extensively analyzed. The porosity and surface groups of the activated carbon varied with the plasma treatment time. By plasma treatment for a few minutes, the microporosity and surface functionality could be simultaneously controlled. The changed microporosity and nitrogen groups affected the CO2 adsorption capacity and CO2 adsorption selectivity over N2. This simultaneous surface etching and functionalization effect could be achieved with a short operating time and low energy consumption.
        4,000원
        110.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분 위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈 마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관 찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없 이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응 용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.
        4,000원
        111.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research measured the change in mechanical characteristics of a sample obtained by finishing a metal coating to an engineering plastic manufactured using a 3D printer to satisfy both lightweight and quality characteristics. High-Temp material, which can be applied to space thermal environments with large temperature fluctuations, was applied as the engineering plastic material, and Stereolithography(SLA) method, which has relatively higher precision than Fused Film Fabrication(FFF) method, was selected as the manufacturing method. Electroless & electroplating were performed by metal coating on the surface to satisfy the characteristics of products requiring electrical conductivity. Tensile and bending tests were conducted to verify a change in the mechanical characteristics of a sample completed with a metal coating, and an adhesion test of the metal coating was also added.
        4,000원
        112.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin method. When X-rays were used the relationship of sin measured on the surface layer of the processing metal did not show linearity when the sin method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray,  becomes a sin function. Since  cannot be used as a constant, the relationship in sin cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren’s diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.
        4,000원
        113.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to apply to high-nickel cathodes for high-capacity and stability enhancement of lithium-ion batteries, the characteristics of the coating film were reviewed using the conventional nickel plating method. The surface morphology of the plating layer and the measurement of the surface roughness were analyzed according to scan size and rate using the contact mode of Atomic Force Microscopy. The hydrogen ion concentration (pH) of the electrolyte played an important role in shaping the metal ion plating. As the overpotential of the surface increased during plating, the crystals grew in a direction other than the main crystal growth direction. The increase in on-time during pulse plating appears to result in coarse particles as much of the applied current is consumed by the reduction of hydrogen ions, resulting in lower current efficiency. From the AFM image, it was confirmed that the blackening of the plated film was due to a partial overvoltage phenomenon during electrolytic degreasing. In order to be used as a high-nickel cathode, it seems that the current must be uniformly distributed on the surface of the substrate during plating.
        4,000원
        114.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 총설은 소수성 불소수지계 분리막의 표면 개질에 대한 개론으로 다양한 표면 개질 방법 및 그 연구 결과를 중 점적으로 서술하였다. PTFE로 대표되는 불소수지계 고분자 분리막은 막 증류, 유수 분리, 기체 분리를 포함한 다양한 막 분 리 공정에서 사용되어왔다. PTFE 막은 내화학성, 내열성, 높은 기계적 강도와 같은 뛰어난 물성에도 불구하고 소수성 표면 특성으로 인해 기술 적용의 확장에 제한적이다. 친수성 향상을 위해 습식 화학법, 친수성 고분자 코팅, 플라즈마 처리, 조사, 원자층 증착과 같은 다양한 PTFE 표면 개질 방법을 이용하며 이를 통해 불소수지계 분리막의 응용분야가 확장될 수 있다.
        4,300원
        115.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electroconvective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.
        4,000원
        116.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y−1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.
        4,200원
        117.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the a novel finishing machine was used for hight-precision surface of spherical ball products that have been widely used for on/off valve for hydrogen energy flowing system and in medical field such as artificial hip joint component. The spherical balls products are the workpiece that made by Co-Cr-Mo alloys with 32-mm in diameter and Sa≈ 0.30μm in surface roughness. Their surface roughness was successfully improved via the magnetic abrasive tools that controlled the magnetic field of permanent magnets. The critical input conditions were selected as rotational speed: 800rpm, gap: 3mm, tool grain size: 1-μm finishing time: 0, 3, 6, 9, 12, and 15min. The results of this research showed that under the given finishing conditions, the high surface quality in the terms of surface precision of spherical ball products are successfully achieved, in which the surface roughness is reduced from 0.30-μm to 0.04-μm within the short finishing time at 12min. Therefore, it can be concluded that a novel finishing machine is feasible to be used for improving the surface roughness of spherical ball products, resulted in high surface precision of materials.
        4,000원
        118.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated variables for improving adhesive strength using laser surface treatment when bonding dissimilar materials using adhesives. adhesive strength analysis was performed for CFRP and Al6061 by laser irradiation intensity, and surface roughness was measured to analyze the related results. In the case of CFRP, the adhesive strength was good when the surface was not treated. In the case of Al6061, the adhesive strength was 25 MPa when the surface was treated with 20W, the maximum output of the laser surface treatment equipment, and the adhesive strength was improved by 125% compared to the untreated specimen. In addition, by measuring the surface roughness in the experiment, it was confirmed that the higher the surface roughness, the better the adhesive strength.
        4,000원
        119.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지난 10년간 선박의 횡동요 복원력 상실에 의한 해양사고가 지속해서 증가하고 있어, 횡동요 운동을 효과적으로 줄일 수 있는 장치가 필요한 실정이다. 횡동요 감쇄 탱크는 단순한 설치만으로 횡동요 저감을 가져오는 대표적인 수동형 제어장치로 그 장점이 널리 알려져 있다. 따라서 본 연구에서는 U-튜브형 횡동요 감쇄 탱크의 수치해석 기법을 개발하고자 한다. 특히, 해석기법의 검증을 위해 자유 수면 높이를 실험을 통해 계측하였다. 수치해석기법은 메쉬 의존성, 난류모델 ( ,  , Reynolds Stress Model), 시간 간격 크기 및 반복 횟수 등의 영향을 비교하여 개발하였다. 최종적으로 개발된 해석기법은 Realizable  이 난류 모델에 10-2s 수준의 시간 간격 크기와 15 회의 반복횟수를 적용하였다. 2가지의 U-튜브형 감쇄 탱크의 조건에서 계측된 자유수면 높이를 이용하여 개발된 해석기법을 검증하였다. 본 연구의 수치해석은 RANS 기반 상용 해석 Solver인 STAR-CCM+ (ver. 17.02)을 이용하였다.
        4,000원
        120.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, halogen lamps for vehicle exterior lamp systems are being replaced by LEDs (Light Emitting Diode) in consideration of miniaturization, power consumption, life, luminance, and eco-friendliness. Due to regulations on the amount of light required, luminance, light uniformity, and glare prevention, it is required to develop a light guide for controlling a light source of an LED lamp for a vehicle. For the development of the light guides, the development of machining technology that can cut micro patterns of hundreds of micrometers scale into surface roughness of tens of nanometers scale must be preceded. In this study, the effect of variations in cutting conditions on surface roughness was analyzed through experiments. The micro patterns was manufactured by cutting into STAVAX material, and the surface of the micro patterns was super-finished using a ball-shaped PCD (polycrystalline diamond) tool without flutes. In experiments, the cutting conditions of the super-finishing process were varied, and the varied cutting conditions were feed rate, radial depth of cut, and spindle speed
        4,000원