Due to the complexity of urban area, the city vehicle routing problem has been a difficult problem. The problem has involved factors such as parking availability, road conditions, and traffic congestion, all of which increase transportation costs and delivery times. To resolve this problem, one effective solution can be the use of parcel lockers located near customer sites, where products are stored for customers to pick up. When a vehicle delivers products to a designated parcel locker, customers in the vicinity must pick up their products from that locker. Recently, identifying optimal locations for these parcel lockers has become an important research issue. This paper addresses the parcel locker location problem within the context of urban traffic congestion. By considering dynamic environmental factors, we propose a Markov decision process model to tackle the city vehicle routing problem. To ensure more real situations, we have used optimal paths for distances between two nodes. Numerical results demonstrate the viability of our model and solution strategy.
PURPOSES : It is necessary to implement traffic-control strategies for underground roads. In this study, the application criteria for traffic control were developed to minimize actual traffic congestion on underground roads before it occurs. In particular, the traffic congestion judgement criteria and procedure (TJCAP) were developed. They can specifically classify the possibility of traffic congestion underground.
METHODS : A microscopic traffic simulation model was used to analyze different scenarios. With the scenario simulation results, a hierarchical clustering analysis was applied to produce quantitative values from the TJCAP for each experimental network case.
RESULTS : For network case (a), it was concluded that the possibility of traffic congestion on underground roads increases when the speed of the ground road connected to the main underground road and the connected ground road after the outflow of the ramp section is low. When the connected road is an interrupted facility after entering the underground roads, the red time is long, and when the section travel speed is 15 km/h, the possibility of traffic congestion underground is highest. A cluster analysis based on these results was performed using two techniques (elbow and silhouette) to verify the final classification.
CONCLUSIONS : The TJCAP were designed to operate traffic flow with stricter criteria than traffic congestion management on ground roads. This reflects the difference in the driving environment between underground and above-ground roadways.
항로에서의 위험도 평가 모델은 해상 교통량을 기초로 다양한 형태의 수학적 분석 방법 등이 응용되고 있다. 국내 해상교통안 전진단에서는 항로를 통항하는 선박 규모를 표준화시킨 해상교통혼잡도 모델을 활용하고 있으며, 해상교통혼잡도가 높으면 충돌과 같은 위험상황이 발생할 개연성이 높다고 해석하고 있다. 그러나 항로의 특정 지점에서 관측된 해상 교통량의 밀도 변화가 항로의 위험도를 표현할 수 있는지 보다 면밀한 과학적 검토가 필요하다고 판단된다. 본 연구에서는 항로에서의 충돌 및 좌초 등의 위험도를 확률적 기법으로 평가하는 IWRAP Mk2(IALA 공식 추천 평가모델) 모델로 항로 위험도를 체계적으로 평가하고, 동일 해역에서 해상교통혼잡도 모델로 해상교통혼잡도를 평가하여 항로 위험도와 해상교통혼잡도의 연관성을 분석하였다. 분석 결과, R2이 0.943인 선형함수가 도출되었으며, 유의수준에서도 유의성이 있는 것으로 분석되었다. 또한 Pearson 상관계수가 0.971로 높게 나타나 강한 정적 상관관계를 보였다. 이처럼 각각의 수학모델의 공통적인 입력 변수의 영향으로 항로 위험도와 해상교통혼잡도는 강한 연관성을 가지는 것으로 확인되었다. 이러한 연구 결과를 기반으로 항로 위험도를 예측할 수 있는 평가 기법이 고도화될 수 있는 모델 개발을 위한 응용 자료로 활용되기를 기대한다.
PURPOSES : In this study, analyze the characteristics of IOC indicator 'threshold' which is needed when evaluating the traffic signal operation status with ESPRESSO in various grade road traffic environment of Seoul metropolitan city and derive suggested value to use in field practice. METHODS : Using the computerized database program (Postgresql), we extracted data with regional characteristics (Arterial, Collector road) and temporal characteristics (peak hour, non-peak hour). Analysis of variance and Duncan's validation were performed using statistical analysis program (SPSS) to confirm whether the extracted data contains statistical significance. RESULTS: The analysis period of the main and secondary arterial roads was confirmed to be suitable from 14 days to 60 days. For the arterial, it is suggested to use 20 km/h as the critical speed for PM peak hour and weekly non peak hour. It is suggested to use 25 km/h as the critical speed for AM peak hour and night non peak hour. As for the collector road, it is suggested to use 20 km/h as the critical speed for PM peak hour and weekly non peak hour. It is suggested to use 30 km/h as the critical speed for AM peak hour and night non peak hour.
CONCLUSIONS : It is meaningful from a methodological point of view that it is possible to make a reasonable comparative analysis on the signal intersection pre-post analysis when the signal operation DB is renewed by breaking the existing traffic signal operation evaluation method.
Since the opening of Gyeongbu Expressway, the first Korean expressway of 428km connecting Seoul and Busan in 1970, the total length of expressway exceeds 4,200km at the moment. The Expressway Traffic Management System (ETMS) started at the Seoul-Daejeon section of Gyeongbu Expressway in 1992 and it was expanded to the whole expressway network. Although the introduction of a successful traffic management system, the total recurrent congested sections below 40kph are 51 sections of 373km on expressways and the traffic congestion cost as a social cost reaches a total of 2.8 trillion KRW (about US $2.6 billion) only on the expressways. Measures to improve traffic congestion can be applied to expanding the supply of facilities and increasing the efficiency of facilities. Physical improvement, which means expansion and construction of roads, is cost and time constrained, and there is also a limit for the improvement of traffic operation. In order to maximize the effect of traffic congestion management, there is a need to harmonize the both, but there is still a lack of awareness of the importance of integrated traffic management in Korea. In this study, the concept of Integrated Traffic Management (ITM) on expressways integrating various individual traffic management techniques such as ramp metering, toll metering, and variable speed limit is proposed and the effect of the effect of Integrated Traffic Management was carried out by the microsimulation model for 15km section on the Seoul Outer Ring Expressway.
어떤 해역의 해상교통혼잡도를 평가하는 데 있어서 단위 시간당 항행 척수인 교통량을 분석하는 것보다 어떤 시간 단면에 존재하는 단위 면적당의 밀집도 분석을 활용하는 것이 합리적일 수 있다. 본 연구에서는 해상교통안전진단 대행기관의 해상교통혼잡도 평가기법을 표준화하고, 선박톤급별 환산교통량 사용으로 인한 평가오차를 최소화하기 위하여 새로운 방안을 찾고자 한다. 이를 해결하기 위해 선박자동식별장치(Automatic Identification System, AIS)의 통항선박 데이터를 활용하여 항로구간면적 대비 식별된 개개의 통항선박이 갖고 있는 점용영역의 면적을 합산한 값과의 백분율을 해상교통혼잡도로 평가하는 방안을 제시하였다. 새로운 모형에서는 정보통신기술의 획기적인 발달로 인해 실제 데이터 사용이 가능하여 환산 데이터에 의한 오차발생을 줄일 수 있고, 항로구간별 해상교통혼잡도 평가도 가능하게 되었다.
본 연구에서는 계절별 혼잡도 변화를 검토하기 위해 1년 동안의 주요 연안 통항로 및 항만 입출항로를 대상으로 계절별 기상특보가 발효되지 않은 1주일간의 GICOMS Data를 바탕으로 혼잡도 평가를 실시하였다. 그 결과 시간당 평균 혼잡도의 계절별 차이는 최대 약 11 %, 평균 약 3.5 %, 피크시간 혼잡도의 계절별 차이는 최대 약 82 %, 평균 약 30 %를 보이는 것으로 분석되었다. 향후 혼잡도 평가시에 이러한 계절별 혼잡도 변화를 감안하여야 하며, 특히 해상교통안전진단에서의 평가 시에는 이러한 계절별 차이가 존재하므로 혼잡여부에 대한 해상교통 안전대책 마련에 더욱 주의를 기울여야 할 것이다.
PURPOSES: This study was initiated to estimate expressway traffic congestion costs by using Vehicle Detection System (VDS) data. METHODS : The overall methodology for estimating expressway traffic congestion costs is based on the methodology used in a study conducted by a study team from the Korea Transport Institute (KOTI). However, this study uses VDS data, including conzone speeds and volumes, instead of the volume delay function for estimating travel times. RESULTS : The expressway traffic congestion costs estimated in this study are generally lower than those observed in KOTI's method. The expressway lines that ranked highest for traffic congestion costs are the Seoul Ring Expressway, Gyeongbu Expressway, and the Youngdong Expressway. Those lines account for 64.54% of the entire expressway traffic congestion costs. In addition, this study estimates the daily traffic congestion costs. The traffic congestion cost on Saturdays is the highest. CONCLUSIONS : This study can be thought of as a new trial to estimate expressway traffic congestion costs by using actual traffic data collected from an entire expressway system in order to overcome the limitations of associated studies. In the future, the methodology for estimating traffic congestion cost is expected to be improved by utilizing associated big-data gathered from other ITS facilities and car navigation systems.
본 연구에서는 해상교통혼잡도에 영향을 미치는 요소인 선박점용영역크기, 선박의 속력, 항로폭에 대한 민감도 분석을 실시하였으며, 가장 민감한 요소로 선박점용영역을 도출하였다. 선박점용영역에 대해 일본, 덴마크 해협, 중국 상하이항에서의 점용영역에 대한 기존 연구사례를 조사하고, 우리나라 진해만 피항시의 해상교통관측조사를 통한 선박점용영역을 도출하여 비교 분석하였다. 민감도 분석 결과, 선박속력 1노트 변화시 10 %, 항로폭 100미터 변화시 18 %, 점용영역 장직경 1L 변화시 34 %∼43 %의 영향이 미치는 것으로 분석되었다. 그 결과, 현행 진단제도에서 사용하는 8L×3.2L, 6L×1.6L은 일본의 3.5L×1.5L, 중국 상하이항 5.9L×2.2L, 덴마크 해협 4L×5B 및 진해만 피항시의 선박점용영역 3L×2L과 큰 차이가 있음을 확인하였다.
PURPOSES : To operate more efficient traffic management system, it is utmost important to detect the change in congestion level on a freeway segment rapidly and reliably. This study aims to develop classification method of congestion change type. METHODS: This research proposes two classification methods to capture the change of the congestion level on freeway segments using the dedicated short range communication (DSRC) data and the vehicle detection system (VDS) data. For developing the classification methods, the decision tree models were employed in which the independent variable is the change in congestion level and the covariates are the DSRC and VDS data collected from the freeway segments in Korea. RESULTS : The comparison results show that the decision tree model with DSRC data are better than the decision tree model with VDS data. Specifically, the decision tree model using DSRC data with better fits show approximately 95% accuracies. CONCLUSIONS : It is expected that the congestion change type classified using the decision tree models could play an important role in future freeway traffic management strategy.