This study investigates the role of the NAC transcription factor ANAC032 in regulating abscisic acid (ABA)-dependent stress responses and its involvement in sugar signaling pathways. Arabidopsis seedlings with overexpressed or knock-out ANAC032 were examined for their sensitivity to ABA, glucose, and fluridone to elucidate the functional role of ANAC032 in ABA and high glucose-mediated growth retardation. Our results showed that ANAC032 negatively regulates ABA responses, as ANAC-overexpressing plants exhibited higher ABA sensitivity, while anac032 mutants were less sensitive. Under high glucose conditions, anac032 mutants demonstrated hyposensitivity, with germination rates higher than wild-type and ANAC032-overexpressing plants. Additionally, yeast two-hybrid screening identified three NAC proteins, ANAC020, ANAC064, and ANAC074, interact with ANAC032. These findings highlight ANAC032’s role in stress signaling pathways and its potential interactions with other NAC proteins, contributing to a better understanding of transcriptional regulation in plant stress responses and possibly expanding to forage crop development.
Ethylene-responsive factors (ERFs) are important plant transcription factors (TFs) that regulate plant responses against various abiotic stresses. However, little information of ERF genes involved in abiotic stress is available in petunia (Petunia ×hybrida). In this study, a petunia ERF gene, PhERF039, was cloned and functional analysis was performed. The quantitative PCR analysis revealed that PhERF039 was induced at the early stage of water deficit stress. Under-expression of PhERF039 (UE) exhibited rosette growth habit, higher number of branches, and delayed flowering compared to the wild type (WT). The UE petunia was evaluated under various volumetric water contents (θ): 0.25, 0.15, 0.10, or 0.05 m3·m-3 using an automated irrigation system. Transgenic plants did not delay plant wilting, but the θ for UE reached to the set point later than that for WT. A lower stomatal conductance was observed in UE than WT under all treatments. These results suggested that PhERF039 could be involved in plant responses under water deficit by regulating stomatal movements as well as branching pattern and flower development.
Pesticides are indispensable in contemporary agriculture but are mainly attributed to honey bee population decline. In order to understand the approximate physiological response to pesticides, honey bees were exposed to seven pesticides (Acetamiprid, Imidacloprid, Flupyradifurone, Carbaryl, Fenitrothion, Amitraz, and Bifenthrin), and expression changes of the genes categorized into four physiological functions (insecticide targets, immune-, detoxification-, and reactive oxygen species response-related gene) were analyzed in the head and abdomen of honey bee exposed to pesticides using quantitative PCR. Based on the heat map analysis, immune-related genes seem to be more up-regulated by pesticide exposure in head than abdomen. Among detoxification genes, only cytochrome P450 families were up-regulated in head. Interestingly, regardless of the insecticide target, expressions of Nicotinic acetylcholine receptor beta 1 and Acetylcholinesterase 1 were notably induced by pesticide exposure in head. Heat map analysis expressing the transcription profiles of various genes in the head and abdomen of the honey bee exposed to various pesticides can be used to diagnose pesticide damage in honey bees in the future.
The plant-specific NAC transcription factors control various biological processes, including plant development and stress responses. We have isolated an ANAC032 gene, one of the NAC transcription factor family, which was highly activated by multi-abiotic stresses, including high salt and drought in Arabidopsis. Here, we generated transgenic plants constitutively expressing ANAC032 and its knockout to identify the functional roles of ANAC032 in Arabidopsis under abiotic stress responses. The ANAC032-overexpressing plants showed enhanced tolerance to salinity and drought stresses. The anac032 knockout mutants were observed no significant changes under the high salt and drought conditions. We also monitored the expression of high salt and drought stress-responsive genes in the ANAC032 transgenic plants and anac032 mutant. The ANAC032 overexpression upregulated the expression of stress-responsive genes, RD29A and ERD10, under the stresses. Thus, our data identify that transcription factor ANAC032 plays as an enhancer for salinity and drought tolerance through the upregulation of stress-responsive genes and provides useful genetic traits for generating multi-abiotic stress-tolerant forage crops.
The ovary undergoes substantial physiological changes along with estrus phase to mediate negative/positive feedback to the upstream reproductive tissues and to play a role in producing a fertilizable oocyte in the developing follicles. However, the disorder of estrus cycle in female can lead to diseases, such as cystic ovary which is directly associated with decline of overall reproductive performance. In gene expression studies of ovaries, quantitative reverse transcription polymerase chain reaction (qPCR) assay has been widely applied. During this assay, although normalization of target genes against reference genes (RGs) has been indispensably conducted, the expression of RGs is also variable in each experimental condition which can result in false conclusion. Because the understanding for stable RG in porcine ovaries was still limited, we attempted to assess the stability of RGs from the pool of ten commonly used RGs (18S, B2M, PPIA, RPL4, SDHA, ACTB, GAPDH, HPRT1, YWHAZ, and TBP) in the porcine ovaries under different estrus phase (follicular and luteal phase) and cystic condition, using stable RG-finding programs (geNorm, Normfinder, and BestKeeper). The significant (p < 0.01) differences in Ct values of RGs in the porcine ovaries under different conditions were identified. In assessing the stability of RGs, three programs comprehensively agreed that TBP and YWHAZ were suitable RGs to study porcine ovaries under different conditions but ACTB and GAPDH were inappropriate RGs in this experimental condition. We hope that these results contribute to plan the experiment design in the field of reproductive physiology in pigs as reference data.
한어(漢語)를 기록하는 언어부호로서 한자는 점진적으로 발전을 거듭하여 성숙한 문자체계를 갖추었다. 서사(書寫)의 측면에서 한자는 고문자 단계에서 서사원소(書寫 元素)의 계통(系統)적인 발전 과정을 거쳐, 예서에서 한자의 기본 ‘필획‘이 완성되었 다. 고문자 서사원소의 체계적인 발전은 크게 두 가지 방향으로 이루어졌다. 하나는 고문자 서사원소의 본질적인 변화이다. 이는 서사원소가 사물을 묘사하는 선에서 글 자를 구성하는 선으로 변화하는 과정이다. 다른 하나는 고문자의 서사원소가 유형화 되는 과정이다. 서사원소의 유형화를 통하여 소전에서는 자형에 사용된 모든 ‘선‘이 9가지 기본 대유형으로 귀납되었다. 이러한 고문자 서사원소의 계통적 발전 과정은 한자발전사에서 매우 중요한 과정으로, 이를 통하여 한자는 예변(隸變)의 단계를 진 행할 수 있는 기반을 마련하였다.
사람 아이치바이러스 (Aichivirus A; AiV-A)는 positivesense single-strand RNA 비외피 바이러스로 지난 10년 동안 하수, 강, 지표 및 지상의 다양한 물환경에서 전 세계적으로 검출이 보고되고 있다. 지하수 등 물환경에서 AiV-A 진단을 위한 고감도 및 특이성이 우수한 방법의 개발이 요구됨에 따라, 본 연구에서는 기존 및 신규 설계된 프라이 머 세트를 기초로 역전사 (RT) 및 이중 중합효소연쇄반응이 가능한 조합을 개발하였다. 개발한 방법을 국내 음용 지하수 시료에 적용 및 평가하였으며, 그 결과 지하수 시료에서 AiV-A를 성공적으로 검출 및 동정할 수 있는 RTnested PCR primer sets가 선정되었고 후속적으로 동정할 수 있는 절차가 고안되었다. 본 연구 결과는 지하수 등 물 환경에서 AiV-A 오염을 탐지하기 위한 모니터링 시스템 마련에 기여할 것으로 기대된다.
Doublesex and mab-3 related transcription factor (dmrt) play crucial roles in sex determination and sex differentiation in vertebrates and invertebrates. Although dmrt genes have been identified in vertebrates, little is known about aquatic invertebrates. In this study, two dmrt genes, namely, Dc_dmrt93B and Dc_dmrt99B, were identified from brackish water flea, Diaphanosoma celebensis. Transcriptional changes were observed in the dmrt genes when the flea was exposed to bisphenol (BP), an endocrine disruptor. Sequence and phylogenetic analyses showed that both dmrt genes contained two conserved domains, namely, DM and DMA, closely clustered with those of Daphnia spp. Additionally, a significant increase in the Dc_dmrt99B mRNA expression level was observed upon exposure to intermediate concentrations of BP (bisphenol A>bisphenol S=bisphenol F, p<0.05), while the expression of Dc_dmrt93B mRNA was slightly modulated. These findings imply that the two dmrt genes may be involved in sex differentiation of D. celebensis. Furthermore, it was found that the ability of BP to modulate dmrt genes could affect development and reproduction. This study provides a basis for understanding the function of the dmrt genes and the molecular mode of action of BP in small crustaceans.
A new WRKY transcription factor gene was isolated by ESTs screening from a cDNA library of suspension cultured cells of Sweet potato (Ipomoea batatas). The 2,285 bp cDNA fragment, IbWRKY, was sequenced, from which a 505 amino acid residue protein was deduced. A search of the protein BLAST database identified significant similarity to other plant WRKY31 protein sequences. RT-PCR analysis showed expression patterns of IbWRKY31 in various intact tissues and suspension cultured cells of Sweet potato, and in leaves exposed to different stresses. The IbWRKY31 gene was highly expressed in suspension cultured cells. In leaf tissues, IbWRKY31 showed strong expression during salicylic acid and methyl jasmonate treatments. Expression of IbWRKY31 was also induced under various abiotic stress and pathogen infection conditions, such as wounding, H2O2, MV, PEG, NaCl, and bacterial pathogen infection. These results suggest that IbWRKY31 is involved in plant responses to various stress conditions, such as abiotic stresses and pathogen infection through a defense signaling pathway.
본 연구에서는 중국 인명과 지명을 의미하는 단어가 한자음과 원지음으로 표기되는 양상과 용법을 분석하였다. 동일한 인명이나 지명을 의미하는 두 가지 표기 단어가 동의어가 아니라 유의어라고 가정하고 한자음 표기 단어와 원지음 표기 단어의 차이와 언어학적 레지스터를 밝히기 위하여 두 가지 방식으로 분석을 진행하였다. 첫째, 한자음 표기와 원지음 표기의 사용 양상을 살펴보기 위하여 말뭉치와 소셜미디어 등에서 단어가 출현하거나 검색되는 빈도를 조사하였다. 빈도의 측정 결과 1986년 이후 현행 외래어표기법에서는 중국의 고유명사를 중국 현지음으로 표기하는 것을 원칙으로 제시하였지만, 매체의 특성이나 텍스트의 성격에 따라서 이전과 마찬가지로 한자음으로 표기되는 경우가 적은 않았다. 둘째, 말뭉치로부터 한자음 표기 단어와 원지음 표기 단어가 출현하는 문장들을 추출하고, 용례 문장에 포함된 명사들로 구성된 텍스트 네트워크를 분석하였다. 텍스트 네트워크를 구성하는 명사들의 연결중심성과 하위집단을 분석한 결과 한자음 표기 단어가 사용되는 문맥과 원지음 표기 단어가 사용되는 문맥 사이에는 뚜렷한 차이가 있음을 확인할 수 있었다.
본 논문은 漢字構形學과 漢字字體學을 이론의 근거로 삼고, 소전의 서사원소 체계에 대한 분석을 바탕으로 하여 서사원소가 소전 자체의 특징을 구현하는 방식에 대하여 묘사하였다. 소전의 자체는 고문자형체 발전의 내부적인 발전 방향에 순응하여 “整齊勻稱, 輪廓偏長, 圓轉 下垂”의 특징을 드러낸다. 9,451자소전의 자형에서 서사원소로 가장 많이 사용된 弧線과 橫線 그리고 豎線의 서사표현을 선의 형태와 선의 조합방법 등의 내용에 중점을 두고 묘사하였다. 이를 통해 소전의 주요선이 자체의 특징을 나타내기 위해 운용한 서사방법들이 상당히 성숙한 체계를 갖추고 있음을 논하였다.
Interferon tau (IFNT) regulation, an anti-luteolytic factor produced by conceptuses of the ruminant ungulates, is essential for the maintenance of early pregnancy, but a definitive mechanism for its temporal transcription has not been elucidated. We and others have observed the T-box protein eomesodermin (EOMES) exhibited high mRNA expression in the ovine embryonic trophectoderm; thus, both caudal-relatedhomeobox-2 (CDX2) and EOMES coexist during the early stages of conceptus development. Objective of this study was to examine the effect of EOMES on ovine IFNT gene transcription when evaluated with CDX2, ETS2 and AP1 transcription factors implicated in the control of cell differentiation in the trophectoderm. In this study, quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis between ovine trophoblast cells was initially performed, finding that transcription factors CDX2 and ‘EOMES transcription factor mRNAs’ were specific to trophectoderm cells. These mRNAs were also found in days 15, 17, and 21 ovine conceptuses. Furthermore, human choriocarcinoma JEG3 cells (trophoblast cell line) were cotransfected with an ovine IFNT (-654bp)-luciferase reporter (-654-oIFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with CDX2, ETS2 and AP1 increased transcription of -654-oIFNT-Luc by about 11-fold compared with transfection of the construct alone. When cells were initially transfected with EOMES followed by transfection with CDX2, ETS2 and/or AP1, the expression of -654-oIFNT-Luc was decreased. Also, EOMES factor inhibited the stimulatory activity of CDX2 alone. These results suggest that when conceptuses attach to the uterine epithelium, ovine IFNT gene transcription is down-regulated by an increase of EOMES factor expression in the attached ovine trophoblast cells.
In the early First Millennium AD, Vietnam imported Chinese language and culture, which had a lasting influence ever since. Chinese influence on Vietnamese written and spoken language is notable in particular. Despite this, due to the fact the two languages belong to two distinct families and differences in the number and structure of syllables available in each language, the borrowed Chinese language cannot transcribe all of Vietnamese personal and local names properly. This is the reason for the formation of the Nom script. From the 17th century onwards, Western missionaries used the Nom script for religious purposes, which led to the formation of the Latin-based Vietnamese alphabet. It would not be an overstatement to say that, 17th century Catholic documents written in Nom are of indispensable value to researchers who wish to study the history of the Vietnamese language and the Latin-based Vietnamese alphabet. Based on the materials from Kinh nhung le mua phuc sinh (Scriptures on Easter Rituals), this paper will focus on the Nom transcription of foreign Saints' names, which will show the differences in syllabic structure between Western languages (Portuguese and France) and Vietnamese, as well as give an overall idea of Nom transcribing rules.
Many transcription factors are involved in directing the growth of porcine oocytes. The localization and expression level of a given transcription factor often differ at each stage of early embryonic growth, which spans from fertilization to the formation of the blastocyst. A hallmark of the blastocyst stage is the separation of the endodermal and mesodermal ectoderm. The embryo's medium and its effects are known to be crucial during early development compared to the other developmental stages, and thus require a lot of caution. Therefore, in many experiments, early development is divided into the quality of oocyte and cumulus cells and used in experiments. We thought that we were also heavily influenced by genetic reasons. Here, we examined the expression patterns of five key transcription factors (CDX2, OCT4, SOX2, NANOG, and E-CADHERIN) during porcine oocyte development whose expression patterns are controversial in the pig to the literature. Antibodies against these transcription factors were used to determine the expression and localization of them during the early development of pig embryos. These results indicate that the expressions of key transcription factors are generally similar in mouse and pig early developing embryos, but NANOG and SOX2 expression appears to show species-specific differences between pig and mouse developing embryos. This work helps us better understand how the expression patterns of transcription factors translate into developmental effects and processes, and how the expression and localization of different transcription factors can crucially impact oocyte growth and downstream developmental processes.
Periodontal diseases have been associated with the development of cardiovascular diseases. Accumulating evidences have indicated that Porphyromonas gingivalis , a major periodontopathic pathogen, plays a critical role in the pathogenesis of atherosclerosis. In the present study, we demonstrated that P. gingivalis lipopolysaccharide (LPS) increases the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) in rat vascular smooth muscle cells. We showed that the MMP-9 expression induced by P. gingivalis LPS is mediated by the activation of signal transducer and activator of transcription 3 (STAT3) in vascular smooth muscle cells. Furthermore, the inhibition of STAT3 activity reduced P. gingivalis LPS-induced migration of vascular smooth muscle cells. Overall, our findings indicate that P. gingivalis LPS stimulates the migration of vascular smooth muscle cells via STAT3-mediated MMP-9 expression.
한국에 유입된 한자어는 국어화한 보통명사, 고유명사, 새로운 개념어, 그 외 개별 음역 차 용어로 나눌 수 있다. 이들 중 국어화한 보통명사는 한국 한자음으로 표기하고, 개별 음역 차 용어는 단어마다 특유의 독음법이 정착하였다. 반면 고유명사와 새로운 개념어는 한국 한자 음과 중국 원지음을 기반으로 한 표기라는 두 가지 독음 방법 사이에서 혼란을 겪고 있다. 한자는 다른 외국어와 달리 국어의 영역에 있었으나 현대에 와서 외국어로 인식되기 시작했다. 한자어의 독음에 대한 논쟁은 이러한 인식 차이에서 기인한다. 본 논문은 이러한 관점에 서 중국에서 유입된 한자어를 분류하고 그 독음 표기가 가지는 문화적 의미를 분석한다.
Variance of conceptus interferon tau (IFNT), produced by the embryonic trophectoderm, is known as a major conceptus protein that signals the process of maternal recognition of pregnancy in ruminants, essential for the maintenance of early pregnancy. Similar to other IFN genes such as IFNA and IFNB, multiple IFNT genes are present. However, some kinds of IFNT genes actively transcribed and regulated in bovine conceptuses have not been well characterized. In this study, during the course of bovine IFNT gene transcription through the use of next generation sequencer SOLiD3, revealed that among 38 IFN genes registered, only two transcripts, IFNT1 and IFNTc1, were found in conceptuses during early pregnancy. Also, to identify a transcription factor(s) involved in the regulation of IFNT genes, mRNAs for various known transcription factors were investigated by real-time PCR in conceptus tissues, respectively. Furthermore, compared to the IFNT genes, IFNT1 and IFNTc1 had same active levels, which were previously shown to correlate with the appearance of effective antiviral activity. However, the expression levels of these Luc activities differed. Bovine ear fibroblast (EF) cells were cotransfected with luciferase reporter constructs carrying upstream (–631 to -51) promoter regions of IFNT1 or IFNTc1 and various transcription factor expression plasmids, CDX2, AP1(JUN), ETS2 and/or cAMP-response element binding protein (CREB)-binding protein (CREBBP). CDX2, either alone with the other 2 transcription factors, was found to increase luciferase activity approximately 14- and 11-folds, respectively. The degree of transcriptional activation of the IFNTc1 gene was not similar to that IFNT1 gene by AP1, ETS2 or/and CREBBP, expression plasmid. These results suggest that two isoforms of bovine conceptus IFNT genes are regulated differently in conceptuses during early pregnancy.
Host defense against pathogen invasion highly relies on immune defense machinery that is controlled by the nuclear factor-κB (NF-κB) of transcription factors. The Toll pathway are well known as an insect innate immune mechanism to protect host itself from invaded pathogens. Basically, in the edible insect, Tenebrio molitor, the Toll pathway is primarily activated by polymeric Lys-type peptidoglycans (PGNs), and components of fungal cell walls, β-1,3-glucan. Based on the current studies, the tremendous study has been focused on recognition and subsequent activation of spätzle in haemolymph, hence, there is a grave gap for intracellular event. Herein, in order to understand intracellular event of Toll signaling pathway, the Dorsal gene were identified. Moreover, domain analyses of TmDorsal2 gene indicate that there are two major domains such as Rel homology domain (RHD), ig-like, plexins, and transcription factors (IPT) domains. Based on the achieved results, TmDorsal2 mRNA was highly expressed in 1-day old pupa. Furthermore, TmDorsal2 was highly expressed in Malpighian tubules and fat body in last instar larvae (LL), and likewise mainly expressed in Malpighian tubules during adult 5-day old period, also the lowest expression of TmDorsal2 was observed in gonads. Moreover, TmDorsal2 mRNA levels after infection with E. coli appreciably went up at 6 and 9h time points. To investigate the effects of TmDorsal2 RNAi on larval susceptibility against various pathogens namely E. coli, S. aureus or C.albicans, dsRNA of TmDorsal2 has been synthesized the larvae dissected after 24h. As a result, TmAttacin1a, 1b and 2, TmDefencine1 and 2, TmTenecin1, 2, 3 and 4, TmCecropin2, TmColeoptericin1 and 2, Thaumatin-like protein 1 and 2 markedly reduced in the gut after injecting all mentioned microbes. In contrast, TmTenecin 2, Thaumatin-like protein 1 and 2 strikingly increased after microbe injection in the fat body. Interestingly, the most AMPs gene expression in whole body experimental case were upregulated. On the horizon, we will investigate effects of TmDorsal1 RNAi on larval susceptibility against various pathogens. Taken together, our studies may aid to understand insect innate immunity.