Considering the domestic situation where all nuclear power plants are located on seaside, the interim storage site is also likely to be located on coastal site. Maritime transportation is inevitable and the its risk assessment is very important for safety. Currently, there is no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the immersion of transport cask. Previous studies show that the release rate of radionuclides contained in a submerged transport cask is significantly affected by the area of flow path generated at the breached containment boundary. Due to the robustness of a cask, the breach is the most likely generated between the lid and body of cask. CRIEPI investigated the effect of cask containment on the release rate of radioactive contents into the ocean and proposed a procedure to calculate the release rate considering the socalled barrier effect. However, the contribution of O-ring on the release rate was not considered in the work. In this study, test and analysis is performed to determine the equivalent flow path gap considering the influence of O-rings. These results will be implemented in the computational model to assess sea water flow through a breached containment boundary using CFD techniques to assess radionuclide release rates. To evaluate the release rate as a function of lid displacement, a small containment vessel is engineered and a metal O-ring of the Helicoflex HN type is installed, which is the most commonly used one in transport and storage casks. The lid of containment vessel is displaced in vertical and horizontal direction and the release rate of the vessel was quantified using the helium leak test and the pressure drop test. Through this work, the relationship between the vertical opening displacement and horizontal sliding displacement of the cask lid and the actual flow path area created is established. This will be implemented in the CFD model for flow rate calculation from a submerged transport cask in the deep sea. In addition, the compression of the O-ring causes very small gaps, such as capillaries. In these cases, Poiseuille’s law is used to calculate the capillary flow rate.
Given the situation in the Republic of Korea that all nuclear power plants are located at the seaside, the interim storage facility is also likely to be located at seaside and the maritime transportation of Spent Nuclear Fuel is considered inevitable. The Republic of Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radionuclides from a submerged transportation cask in the sea. Therefore, there is a need to develop a technology that can assess the impact of immersion accidents and establish a regulatory framework for maritime transportation accidents. The release rate of radionuclides should be calculated from the flow rate through a flow path in the breached containment boundary. According to the cask design criteria, it is anticipated that even under severe accident conditions, the flow path size will be very small. Previous studies have evaluated fluid flow passing through micro-scale channel by integrating internal and external flows within and around a transport cask. As part of the evaluation, a comprehensive “Full-Field Model” incorporating external flow fields and a localized “Local-Field Model” with micro-scale flow paths were constructed. Sub-modeling techniques were employed to couple the flow field calculated by the two models. The aforementioned approach is utilized to conduct the evaluation of fluid flow passing through micro-scale flow paths. This study aims to evaluate fluid flow passing through micro-scale flow paths using the aforementioned CFD (Computational Fluid Dynamics) method and aims to code the findings. The Gaussian Process Regression technique, a machine learning model, is utilized for developing a mathematical metamodel. The selected input parameters for coding are organized and their respective impacts are analyzed. The range of these selected parameters is tailored to suit domestic environments, and computational experiments are planned through Design of Experiments. The flow path size is included as an input parameter in the coded model. In cases where the flow path size becomes extremely small, making it impractical to use CFD techniques for calculations, Poiseuille’s law is employed to calculate the release rate. In this study, a model is developed to evaluate the release rate of radionuclides using CFD and mathematical equations covering the whole possible range of flow path size in a lost cask in the deep sea. The model will be used in the development of a maritime transportation risk assessment code suitable for the situation and environment in Korea.
This study investigates the behavior of the thermal conductivity among material properties in order to develop a thermal evaluation methodology of spent fuel assembles in a transport cask. It is inefficient to model each element of the spent fuel assembly in detail, and it is generally calculated by modeling the effective thermal conductivity (ETC). The ETC model was developed to allow a much simpler representation of a spent fuel assembly within a fuel compartment by treating the entire spent fuel rod array and the surrounding fill gas within the confines of the compartment as a homogenous solid material. The fuel rod assembly and surrounding gas are modeled with an effective conductivity that is designed to yield an overall conduction heat transfer rate that is equivalent to the combined effect of local conduction and radiation heat transfer in a plane through the assembly. When this model is applied to the transport cask, it tends to predict the cladding peak temperature lower than the results of detailed model in which the fuel rod arrangement and shape of the fuel assembly are simulated. As for the tendency of the error, the model tended to under-predict when basket temperature was lower than a certain temperature, and over-predict when it was higher. The purpose of this study is to investigate the attenuation effect of the cladding peak temperature on the related variables when the ETC model is applied to the transport cask. In addition, based on the thermal characteristics of this model, a correction factor that can compensate for this attenuation effect is presented. This correction factor is obtained by finding the difference between a separate ETC homogeneous model and a separate detailed fuel model, rather than directly applying the ETC calculated from the detailed fuel model to the transport cask.
Considering the domestic situation where all nuclear power plants are located on seaside, the interim storage site is also likely to be located on coastal site. Maritime transportation is inevitable and the its risk assessment is very important for safety. Currently, there is no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the immersion of transport cask. Previous studies show that the release rate of radionuclides contained in a submerged transport cask is significantly affected by the area of flow path generated at the breached containment boundary. Due to the robustness of a cask, the breach is the most likely generated between the lid and body of cask. CRIEPI investigated the effect of cask containment on the release rate of radioactive contents into the ocean and proposed a procedure to calculate the release rate considering the so-called barrier effect. However, the contribution of O-ring on the release rate was not considered in the work. In this study, test and analysis is performed to determine the equivalent flow path gap considering the influence of O-rings. These results will be implemented in the computational model to assess sea water flow through a breached containment boundary using CFD techniques to assess radionuclide release rates. The evaluation of release rate due to container lid gaps has been performed by CRIEPI and BAM. In CRIEPI, the gap of the flow path was calculated from the roughness of the container surface without a quantitative assessment of the severity of the accident. In this work, to evaluate the release rate as a function of lid displacement, a small containment vessel is engineered and a metal Oring of the Helicoflex HN type is installed, which is the most commonly used one in transport and storage casks. The lid of containment vessel is displaced in vertical and horizontal direction and the release rate of the vessel was quantified using the helium leak test and the pressure drop test. Through this work, the relationship between the vertical opening displacement and horizontal sliding displacement of the cask lid and the actual flow path area created is established. This will be implemented in the CFD model for flow rate calculation from a submerged transport cask in the deep sea.
In the event of a loss of a SNF (spent nuclear fuel) transport cask during maritime transportation, it is essential to evaluate the critical depth at which the integrity of the cask can be maintained under high water pressure. SNF transport casks are classified as Type B containers and the integrity of of the containment boundary must be maintained up to a depth of 200 meters unless the containment boundary was breached under beyond-design basis accidents. However, if an intact SNF cask is lost at a depth deeper than 200-meter, release of radioactive material may occur due to breach of containment boundary with over-pressure. In this study, we developed a code for the evaluation of the pressure limit of SNF transport cask, which can be evaluated by inputting the main dimensions and loading conditions of cask. The evaluation model was coded as a computer module for ease of use. In the previous study, models with three different fidelities were developed to ensure the reliability of the calculation and maintain sufficient flexibility to deal with various input conditions. Those three models consisted of a high-fidelity model that provided the most realistic response, a low-fidelity model with parameterized simplified geometry, and a mathematical model based on the shell theory. The maximum stress evaluation of the three models confirmed that the mathematical model provides the most conservative results than the other two models. The previous results demonstrate that mathematical models can be used in the code of computer modules. In this study, additional models of transport cask were created using parametric modeling techniques to improve the accuracy of the pressure limit assessment code for different cask and situations. The same boundary conditions and loading conditions were imposed as in the previous simplified model, and the maximum stress results considering the change in the shape of the transport container were derived and compared with the mathematical model. The comparison results showed that the mathematical model had more conservative values than the simplified model even under various input conditions. Accordingly, we applied the mathematical model to develop a transportation container pressure limit evaluation code that can be simulated in various situations such as shape change and various situations.
In case a spent nuclear fuel transport cask is lost in the sea due to an accident during maritime transport, it is necessary to evaluate the critical depth by which the pressure resistance of the cask is maintained. A licensed type B package should maintain the integrity of containment boundary under water up to 200 m of depth. However, if the cask is damaged during accidents of severity excessing those of design basis accidents, or it is submerged in a sea deeper than 200 m, detailed analyses should be performed to evaluated the condition of the cask and possible scenarios for the release of radioactive contents contained in the cask. In this work, models to evaluate pressure resistance of an undamaged cask in the deep sea are developed and coded into a computer module. To ensure the reliability of the models and to maintain enough flexibility to account for a variety of input conditions, models in three different fidelities are utilized. A very sophisticated finite element analysis model is constructed to provide accurate response of containment boundary against external pressure. A simplified finite element model which can be easily generated with parameters derived from the dimensions and material properties of the cask. Lastly, mathematical formulas based on the shell theory are utilized to evaluate the stress and strain of cask body, lid and the bolts. The models in mathematical formula will be coded into computer model once they show good agreement with the other two model with much higher fidelity. The evaluation of the cask was largely divided into the lid, body, and bottom, bolts of the cask. It was confirmed that the internal stress of the cask was increased in accordance with the hydrostatic pressure. In particular, the lid and bottom have a circular plate shape and showed a similar deformation pattern with deflection at the center. The maximum stress occurred where the lid was in the center and the bottom was in contact with the body. Because the body was simplified and evaluated as a cylinder, only simple compression without torsion and bending was observed. The maximum stress occurred in the tangential direction from the inner side of the cylinder. The bolt connecting the lid and the body was subjected to both bending and tension at the same time, and the maximum stress was evaluated considering both tension and bending loads. In general, the results calculated by the formulas were evaluated to have higher maximum stresses than the analysis results of the simplified model. The results of the maximum stress evaluation in this study confirms that the mathematical models provide conservative results than the finite element models and can be used in the computer module.
Thermal analysis and safety assessment of spent fuel transport cask are mainly conducted using commercial Computational Fluid Dynamics (CFD) codes based on Finite Volume Method (FVM). The reliability and predictability of CFD codes have greatly been improved by the development in the computer systems, and are widely used to calculate heat flow in complex structures that cannot be analyzed theoretically. In the field of thermal analysis using the CFD code, it is important to clearly reflect the physical model of the transport cask, and a grid configuration suitable for the physical model is essential for accurate analysis. However, since there are no clear standard and guidelines for grid configuration and size, it is highly dependent on the user’s insight. Spatial discretization errors result from the use of finite-width grids and the approximation of the differential terms in the model equations by difference operators. Since the user usually cannot change the truncation error order of a given discretization scheme, spatial discretization errors can only be influenced by the provision of optimal grids. Therefore, it is necessary to quantify the spatial discretization errors caused by the grid. In the case of Orano TN’s NUHOMS® MP197 transport cask, considering four grids for two sets, the temperature uncertainty of the neutron shield, which has the lowest margin at the limit temperature among transport cask components, was quantified by applying 5-step procedure of the Grid Convergence Index (GCI) method for the uncertainty estimation presented in ASME V&V 20-2009. In the case of domestic spent nuclear fuel transport cask (KORAD21), neutron shield among the transport cask components has the lowest margin at the limited temperature. Accordingly, in this study, the temperature uncertainty of the neutron shield was quantified by applying GCI to three sets considering seven grids. As a result of the calculation, the uncertainty was less than ± 1°C, and the temperature of the neutron shield including the uncertainty was evaluated to be maintained below the limit temperature of 148°C.
According to the ‘Basic Plan for High-Level Radioactive Waste Management (draft)’, the total amount of CANDU spent nuclear fuel is expected to be approximately 660,000 bundles. To safely and efficiently transport this amount to interim storage facilities, it is essential to develop a large-capacity transport cask. Therefore, we have been developing a large-capacity PHWR spent nuclear fuel transport cask, called the KTC-360 transport cask. According to the transport-cask related regulations, the KTC-360 transport cask was classified as a Type B package, and such packages must be able to withstand a temperature of 800°C for a period of 30 min. It is desirable to conduct a test using a fullscale model of a shipping package when performing tests to evaluate its integrity. However, it is costly to perform a test using a full-scale model. Therefore, to evaluate the thermal integrity of the KTC-360 transport cask, the fire test was conducted using a slice model. For comparison purposes, the fire test was also carried out using a 1/4 scale model. In the fire test using a slice model and in the fire test using a 1/4 scale model, the maximum temperature of the cask body was lower than the permitted maximum temperature limit. Therefore, the thermal integrity of the KTC-360 transport cask could be considered to be maintained. The temperature results from the fire test using a slice model were higher than those of the fire test using a 1/4 scale model. Therefore, the effect of flame on a transport cask without combustible materials, such as the KTC-360 transport cask, seems to be affected by the reduction in the time rather than the size reduction.
As the saturation rate of temporary storage facilities for spent nuclear fuel increases, regulatory demands such as interim storage and permanent disposal of spent nuclear fuel are expected to begin in earnest. Considering the domestic situation where all nuclear power plants are located on the waterfront site, the interim storage site is also likely to be located on the waterfront site, and maritime transportation is one of the essential management stages. Currently, there are no independently developed maritime transportation risk assessment code in Korea, and no research has been conducted to evaluate the release of radioactive waste due to the sinking of transport container. Therefore, it is necessary to secure technology to properly reflect the domestic maritime transportation environment and to assess the impact of the sinking accident and to carry out safety regulations. To accurately calculate the releaser rate of radionuclides contained in a cask with breached containment boundary, the flow rate through the gap generated in the containment boundary should be calculated. The fluid flow through this gap which is probably in micro scale in most situations should be evaluated combining the fluid flow inside and outside the cask. In this study, a detailed computational fluid dynamics model to evaluate the internal fluid flow in the cask and a simplified model to capture the fluid flow and the heat transfer around the cask in the sea are constructed. The results for the large scale model are compared with the analytic formula for verification of heat transfer coefficient and they showed good agreements. The heat transfer coefficient thus found can be used in the detailed model to provide more realistic data than those obtained from assumed heat transfer coefficient around the surface of the cask. In the future, fluid flow through the gap between the lid and the body of the cask will be evaluated coupling the models developed in this work.
The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.
The Co-60 is a radioactive material widely used in domestic and foreign medical, industrial, health and research fields. Currently, world market for the Co-60 is about 80 MCi/yr and is expected to grow to 150 MCi/yr by 2025. For the Co-60, Nordion of Canada occupies about 80% of the world market. In the case of Korea, a small amount of sources with relatively low radioactivity intensity are produced using research reactors, but most of the Co-60 is entirely dependent on imports. Accordingly, although the technical feasibility of the Co-60 production technology using the PHWR was evaluated, it was evaluated as a negative result on the additional construction of a hot cell, core management, safety analysis and economic feasibility. Canada, the main producer of the Co-60, is also conducting research on the Co-60 production technology using PWR with GE-Hitachi and Westinghouse as the number of PHWR is expected to decrease. In Korea, it is necessary to preoccupy the Co-60 production technology and auxiliary technology using the PWR by utilizing excellent technology, and active research is being conducted to secure unique nuclear power technology that does not depend on foreign countries. Therefore, in this study, the thickness and weight of the radioactive shielding required for handling (transport) of Co-60 produced using the PWR were calculated.
To rationalize the protection of spent nuclear fuel transport storage cask, we intend to investigate the status of domestic and foreign safety regulations and related technologies to develop sabotage scenarios and analyze the protection performance and radiation impact of transport storage cask. It is essential to conduct an aircraft collision safety evaluation on spent nuclear fuel transportation and storage casks in Korea due to changes in laws and regulations related to nuclear power plant design and demand for enhanced safety. Domestic and foreign research on the protection performance of spent nuclear fuel transport storage cask was based on 9.11 events, and the results of all studies show that the speed of the aircraft and leakage of nuclear materials are insignificant. The Sandia National Laboratory (SNL) calculates Aerosol emissions from spent fuel damage in the event of sabotage and calculates Source Term based on the Durbin-Luna model. In this paper, radiation sensitivity analysis was performed due to damage to the carrier according to the size of the accident, assuming that there was a hole enough to basket from the external shell among the collision scenarios identified for domestic cask models.
Some Spent Fuel Pools (SFPs) will be full of Spent Nuclear Fuels (SNFs) within several years. Because of this reason, transporting the SNF from SFP to interim storage facilities or permanent disposal facilities should be considered. There are two ways to transport the SNF from a site to other site, one is the land transportation with truck or train, and the other is the maritime transportation with ship. The maritime transportation has some advantages compared with the land transportation. The maritime transportation method uses safer route which is far from populated area than land transportation method, and transport more weight than land transportation method. However, the cask should be loaded into the ship for the maritime transportation, and there is a possibility of a drop accident of the cask onto the ship. Therefore, it is necessary to evaluate the structural integrity of the cask and ship for the drop accident during the loading process. To evaluate the structural integrity of the cask and ship, it is necessary to determine the analysis conditions that caused the greatest damage in the drop accident. There may be various conditions such as the drop angle of the cask, the initial falling speed, the drop position onto the ship, the size of the ship, etc. This study set the drop angle of the cask and the drop position onto the ship as the simulation variables, which have high possibility to occur during cask drop. However, the others are excluded since they are controllable by worker. In this paper, various drop angle (0, 15, 30, 45, and 70 degree) of the cask were simulated to define the greatest damage condition. KORAD-21 cask model was used for Finite Element Analysis (FEA), and FEA was performed to simulate a horizontal drop (1 m drop). The strain-hardening material properties for the deck were used as HT36 steel. The Cowper-Symonds constitutive model for HT36 was used to consider the strain rate effect. A Tie-down structure for supporting the cask was modeled with the cask model which contained inner structures like canister, basket, etc. Structural integrity of the cask and tie-down structure were evaluated using the von-Mises stress and equivalent plastic strain (PEEQ), and one of the ship deck was evaluated using deflection of ship deck and equivalent plastic strain. Compared with each cask drop angle conditions, 45 degree of the cask drop angle showed the highest deflection and PEEQ values, but did not exceed ultimate strain of HT36. In the ship deck, the corner of deck showed the highest PEEQ value in all simulation cases. As the result, the 45 degree of the cask drop angle condition results was more conservative than other conditions, and the corners of deck failure was able to evaluate ship safety.
Currently, the HI-STAR 63 transport cask, developed to transport CANDU spent nuclear fuel from the wet storage pool to the dry storage facility which is called the MACSTOR/KN-400, has a transport capacity of 120 bundles, which is unfavorable when considering transportation costs and other related aspects. According to the ‘Basic Plan for High-Level Radioactive Waste Management (draft)’, the total amount of CANDU spent nuclear fuel is expected to be approximately 660,000 bundles. To safely and efficiently transport this amount to interim storage facilities, it is essential to develop a large-capacity transport cask. Therefore, we have been developing a large-capacity PHWR spent nuclear fuel transport cask, called the KTC-360 transport cask. According to the transport-cask related regulations, the KTC-360 transport cask was classified as a Type B package, and such packages need to maintain integrity under the normal transport and accident conditions described in these regulations. To prove the thermal integrity of this cask under the normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62°C, indicating that such casks need to be transported exclusively. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC- 360 cask could be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel, were 446°C lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fireaccident conditions.