검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.
        5,100원
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to conduct a sensitivity analysis to determine the major factors affecting traffic accidents involving elderly pedestrians. METHODS : In this study, a regression tree model was built based on a non-parametric statistical model using data on traffic accidents involving elderly pedestrians. Using this model, we analyzed the degree of change in the probability of pedestrian fatalities. RESULTS : Results of the model analysis show that the first major factor combination affecting traffic accidents involving elderly pedestrians is speeding, night time, and road markers. The second combination is night time and arterial roads (national and local highways). The last combination that may lead to such accidents is heavy vehicles and federally funded local highways. CONCLUSIONS : Preventive measures, such as speed control, proper lighting, median strips, designation of pedestrian protection zones, and guidance of detours, are necessary to manage high-risk combinations causing accidents of the elderly.
        4,200원
        3.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is difficult to optimize the process parameters of directly preparing carbonaceous mesophase (CMs) by solvothermal method using coal tar as raw material. To solve this problem, a Decision Tree model for CMs preparation (DTC) was established based on the relationship between the process parameters and the yields of CMs. Then, the importance of variables in the preparation process for CMs was predicted, the relationship between experimental conditions and yields was revealed, and the preparation process conditions were also optimized by the DTC. The prediction results showed that the importance of the variables was raw material type, solvothermal temperature, solvothermal time, solvent amount, and additive type in order. And the optimized reaction conditions were as follows: coal tar was pretreated by decompress distillation and centrifugation, the solvent amount was 50.0 ml, the solvothermal temperature was 230 °C, and the reaction time was 5 h. These prediction results were consistent with the actual experimental results, and the error between the predicted yields and the actual yields was about − 1.1%. Furthermore, the prediction error of DTC method was within the acceptable range when the data sample sets were reduced to 100 sets. These results proved that the established DTC for chemical process optimization can effectively lessen the experimental workload and has high application value.
        4,200원
        4.
        2020.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.
        4,000원
        5.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For game design planning education, we researched step by step learning method from storyline setting to game content evaluation. In this process, we developed 'Content Generated Tree' educational model applying the segmentation, classification, and prediction process of decision tree theory. This model is divided into the trunk stage as a story setting, the node generation stage as a content branch, and the conformity assessment. In the node generation stage, there are 'Game Theme' stage for determining the overall direction of the game, 'Interest Element' stage for finding the unique joy of the development game, and 'Game Format' stage for setting the visualization direction. The learner creates several game content combinations through content branching, and evaluates each content combination value. The education model was applied to 19 teams, and the efficiency of the step by step learning process was confirmed.
        4,000원
        6.
        2014.11 구독 인증기관 무료, 개인회원 유료
        보증데이터의 분석방법은 크게 두 가지로 분류할 수 있다. 첫째, 현상파악이다. 현상 파악은 각 부품별 보증클레임데이터를 이용하여 각부품의 현 수준을 분석하는 방법으 로 단변량 분석방법이다. 즉 부품의 현 수명(신뢰도)를 분석할 수 있는 생명표법, 카랜 마이어 방법이 대표적이라고 할 수 있다. 둘째, 고장원인분석이다. 부품의 고장에 다양 한 인자가 영향을 줄 것이다. 생산부터 고객의 사용조건까지 다양할 것이다. 이처럼 단순히 사용시간을 가지고 분석하는 것이 아닌 다양한 원인변수를 통해서 원인을 파 악하는 다변량 방법이다. 본 연구에서는 다변량 방법 중 Tree기법과 Cox모형을 적용 하고자 한다. 두 방법을 제시하는 이유는 이 두 방법의 서로의 장단점을 보완하여 최 적을 결과를 얻기 위함이다. Tree의 장점은 결과 해석이 다른 모형에 비해 쉽다. 단점 은 유의한 변수가 무엇인지는 알 수 있으나 정량적으로 표현하기 어렵다. 반면에 COX 모형의 경우는 위험도를 정량적으로 표현할 수 있다. 즉 다양한 인자의 기여도를 비교 적 쉽게 찾을 수 있다. 보증데이터는 다양한 정보와 고장에 대한 정보를 가지고 있으 며 이를 바탕으로 원인분석이 가능하다. 본 논문에서는 다양한 인자를 고려하여 고장원인을 추정할 수 있는 다변량 분석방 법을 보증데이터에 적용해 보았고, 실제 유의함을 확인하였다. 특히 Tree 모형 및 Cox 모형를 통해서 서로의 장단점을 보완하였고, 더욱 정확한 원인을 찾을 수 있었다.
        4,000원
        7.
        2011.10 구독 인증기관·개인회원 무료
        Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. Also proteomics provide potential in the discovery of new sensitive biomarkers for environmental pollution. We utilized SELDI-TOF MS (surface enhanced laser desorption. / ionization time-of-flight mass spectrometry) to analyze the proteomic profile of Heterocypris incongruens exposed to several heavy metals (lead, mercury, copper, cadmium and chromium) and pesticides (emamectin benzoate, endosulfan, cypermethrin, mancozeb and paraquat dichloride). Several highly significant biomarkers were selected to make a model of classification analysis. data sets obtained from H. incongruens exposed to pollutants were investigated for differential protein expression by SELDI-TOF MS and decision tree classification. Decision tree model was developed with training set, and then validated with test set from profiling data of H. incongruens. Machine learning techniques provide a promising approach to process the information from mass spectrometry data. Even thought the identification of protein would be ideal, class discrimination does not need it. In the future, this decision tree model would be validated with various levels of pollutants to apply field samples.
        8.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 도로기하구조 요인과 교통사고간의 관계를 규명하기 위하여 CART분석을 이용하여 전국의 4차로 국도를 대상으로 교통사고예측모형을 개발하고, 다중회귀모형, 확률회귀모형과 CART분석모형을 비교 분석하여 개발한 모형의 적합도를 검증하였다. 연구결과로는 첫째, 변수간의 복합적인 상호관계를 설명할 수 있는 CART분석을 이용하여 국도의 교통사고 예측모형을 개발하고 도로기하구조 요인에 따라 표준교통사고율을 의미하는 교통사고발생도표를 제시하였다. 둘째, CART분석모형에 근거하여 교통사고 발생률에 큰 영향을 미치는 도로기하구조 요인이 구간거리(km), 횡단보도폭(m), 횡단길어깨(m), 교통량 순으로 나타났다. 셋째, CART분석모형의 적합도 검증결과, CART분석모형이 실제교통사고율을 타 모형에 비해 전반적으로 잘 묘사하고 있었으나, 각 모형별로 교통사고율의 크기에 따라 교통사고율이 비교적 낮은 구간에서는 다중회귀모형이, 평균이상의 교통사고율을 나타내는 구간에서는 포아송 회귀모형의 예측력이 높았으며, CART분석모형은 교통사고율의 크기와 상관없이 우수한 예측력을 보였다. 넷째, 도출된 교통사고발생도표는 도로기하구조 조건에 따른 표준교통사고율을 제시해주기 때문에 도로설계 시에 안전한 기하구조 설계요소 선정기준을 제시 할 뿐만 아니라, 교통사고 잦은 지점개선사업추진 시 사업의 우선순위를 판단할 수 있는 기준을 제시하는 등 정책적 활용도가 매우 높을 것으로 판단된다.
        4,000원
        9.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Risk analysis is a formal deductive procedure for determining combinations of component failures and human errors that could result in the occurrence of specified undesired events at the system level. This method can be used to analyze the vast majority of industrial system reliability problems. This study deals with the application of knowledge-engineering and a methodology for the assessment & measurement of reliability, availability, maintainability, and safety of industrial systems using FTA(fault tree analysis), A fuzzy methodology for fault-tree evaluation seems to be an alternative solution to overcome the drawbacks of the conventional approach (insufficient Information concerning the relative frequencies of hazard events). To improve the quality of results, the membership functions must be approximated based on heuristic considerations, The purpose of this study is to describe the knowledge engineering approach, directed to integrate the various sources of knowledge involved in a FTA.
        4,200원
        10.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 국내 하천에서 실측한 유사량 자료를 기초로 데이터 마이닝의 Model Tree 기법을 통해 유사량 산정 공식들을 도출하였으며, 이를 활용하여 내성천에서의 안정하도 단면을 평가하였다. 본 연구에서 도출한 유사량 공식은 국내 모래하상 전체를 대상으로 한 경우, 하폭, 유속, 수심, 경사, 하상토 중앙입경을 선택하였을때 적합도가 가장 높은 것으로 나타났다. 또한 내성천으로 자료의 범위를 한정한 경우에는 경사를 제외한 하폭, 유속, 수심, 하상토 중앙입경을 선택한 유사량 공식의 적합도가 가장 높게 나타났다. 각각의 Model Tree 공식들은 내성천 영주댐 하류 용혈 지점에서의 안정하도 단면 평가를 수행하는데 적용되었으며, 현재 내성천의 단면과 비교했을 때 향후 안정하도 단면으로의 변화를 위해 하상의 침식이 발생할 것으로 예측되었다. 또한 현재 하상보다 완만한 경사가 유지될 경우 장기적으로 평형상태에 도달할 것으로 예측되었다.
        12.
        2014.02 서비스 종료(열람 제한)
        지구환경의 변화로 국내의 강우패턴이 변화하고 사회의 발달로 인한 여가시간을 증가로 산지 및 산지인근 지역에 대한 활용도가 높아짐에 따라 산지재해에 대한 관심도가 증가하고 있다. 산지재해 중 최근 이슈가 되고 있는 토석류재해는 산지에서 발생하여 피해가 하류지역까지 영향을 미치는 재해다. 토석류재해를 저감하기위한 목적으로 다양한 방법들이 동원되고 있지만 사방댐의 건설이 가장 큰 비중을 차지하고 있다. 본 연구에서는 산지환경 및 산지계류의 생태계에 영향을 미치는 사방댐의 건설에서 벗어나 환경 친화적이고 발생원에서의 재해위험을 저감할 수 있는 수목을 이용한 토석류 재해저감 효과를 확인하기 위해 수목 뿌리 모사모형을 제작하였다. 또한 수목 뿌리모사모형을 이용한 토석류 유출량 변화실험을 수행하여 수목 뿌리의 형태에 따른 저감효과를 분석하였다. 연구결과 다양한 수목뿌리 형태에 따른 토석류 저감효과를 제시하였다.
        13.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 유역의 공간상관성을 고려한 다지점 일단위 강수량을 동시에 모의할 수 있는 일강수량 모의기법을 개발하였다. 기존 Hidden Markov Chain Model(HMM)은 단일지점 강수모의에 적용되어 왔으나 관측지점간의 유역상관성을 충분히 고려하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 Chow-Liu Tree(CLT) 모형을 적용하여 다변량(multivariate) 형태로써 유역내에 위치한 강우관측소간의 상호종속성을 고려하기 위하여 기존의 동질성 HMM 강우모의기법과 CLT 알고리즘을 결합한 동질성 CLT-HMM 모형을 개발하였다. 본 연구에서 개발된 동질성 CLT-HMM 모형을 사용하여 장기간의 수문자료를 보유하고 있는 기상청 산하의 한강유역 강수네트워크에 대해서 적합성을 검토하였다. 동질성 CLT-HMM 모형을 적용하여 모의 된 결과를 보면 일강수량의 계절적 특성뿐만 아니라 일강수량 모의 시 강수시계열의 통계적인 특성들까지 우수하게 모의하였다. 추가적으로 상관행렬(correlation matrix)을 이용하여 기상관측소간의 공간상관 재현성을 검토한 결과 관측지점들 사이의 공간상관성도 비교적 우수하게 재현하는 것을 확인할 수 있었다.
        14.
        2013.04 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 게임의 실외 지형을 구성하는 많은 수의 다양한 나무를 효율적이고 자연스럽게 표현하기 위한 나무 성장 모델을 설계한다. 제안하는 나무 성장 모델은 (1) 다양한 종류의 나무를 보다 직관적이면서 자연스럽고 효율적으로 모델링하기 위한 성장 볼륨 및 약수 함수의 합성 곱 기반의 나무 모델링 방법, (2) 복잡한 구조의 다수 나무들의 실시간 처리를 위하여 인스턴싱 기반의 가지의 세분화 단계를 통한 렌더링 방법, 그리고 (3) 이를 조합하여 게임 배경을 효율적으로 구축하는 방법으로 구성된 나무 성장 모델이다. 제안한 나무 성장 모델을 통하여 자연스럽고 다양한 나무의 성장과 이를 통한 자연스러운 게임 배경의 구축 가능성 및 실시간 처리의 효율성을 실험을 통해 확인한다.
        15.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 결정트리 학습 알고리즘을 활용한 축구 게임 수비 NPC 제어 방법을 제안한다. 제안하는 방법은 실제 게임 사용자들의 이동 방향 패턴과 행동 패턴을 추출하여 결정트리학습 알고리즘에 적용한다. 그리고 학습된 결정트리를 바탕으로 NPC의 이동방향과 행동을 결정한다. 실험결과 제안하는 방법은 결정트리 학습에 시간이 다소 걸리지만, 학습된 결정트리를 바탕으로 이동방향이나 행동을 결정하는 시간은 약 0.001-0.003 ms(밀리초)가 소요되어 실시간으로 NPC를 제어할 수 있었다. 또한, 제안하는 방법은 현재 상태 정보 뿐만 아니라 이를 분석한 관계정보, 이전 상태 정보도 함께 활용하므로, 기존방법인 (Letia98)에 비해 이동방향 결정시 높은 정확도를 나타냈다.
        16.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        도로교량의 경우 급속한 도시화로 인해 증가한 교통량을 처리하기 위해 교량확폭과 신설교량의 추가 건설 등의 방법이 사용되고 있다. 하지만 현재 국내에서는 확폭 또는 신설 교량의 추가건설의 타당성을 판단하기 위한 합리적인 절차나 기준이 마련되어 있지 않다. 또한 교량 확폭 공사 시에는 일반적인 교량신설 공사에 비해 불확실성을 내포한 사건들이 추가적으로 존재한다. 이에 본 논문에서는 의사결정수 방법을 이용해 교량확장에 따라 발생 가능한 사건의 기대 위험비용을 체계적으로 고려할 수 있는 개선된 형태의 생애주기비용 분석 모델을 제안하였다.