Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, the low-cost wireless MEMS sensor has high noise density and transmits the signal wirelessly, so data transmission delay occurs during measurement. Therefore, the footbridges that was previously measured by a mobile phone in 2014 was remeasured using G-Link-200, iPad and iPhone to compare their performance.
Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. However, the research on the tall buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor and iPad to compare and analyze the vibration measurements of three tall buildings and two towers.
Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. Preliminary studies on the continuous vibration measurement of high-rise buildings using MEMS sensors have been carried out. However, the research on the low-rise buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor to compare and analyze the vibration measurements of three low-rise buildings.
With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.
본 논문에서는 교량의 건전도 감시용 자립형 계측유닛을 위한 교량의 상시진동을 이용한 진동발전시스템을 제시하였다. 본 연구에서는 전기자 반작용의 영향을 최소화한 새로운 구조의 진동발전기를 제안하고, 기계적 및 전기적인 설계식을 유도한 다음, 시험용 진동발전기를 제작하였다. 또한, 매우 작은 발전 전류의 축전시스템에 대하여 고찰하고 개선점을 도출하였다. 축전시스템에 대한 고찰 결과, 정류기에 사용된 다이오드 특성이 충전과정에서 지배적임을 밝혔다. 마지막으로, 진동발전시스템 모델에 실측 남해대교 가속도 데이터를 적용한 시뮬레이션과 실내 실험을 수행하였고, 제작된 시험용 진동발전기의 적용성과 효용성을 확인할 수 있었다.
Early alarm system is to detect slope movement before its collapse for road manager to respond quickly. In this paper, alarm criteria for this system is suggested when vibration and angle sensor are used.
Dynamic characteristics of large civil infrastructures have been monitored for safe operation and efficient maintenance of the structures. To measure vibration data, the conventional system uses cables causing very expensive costs and inconvenience for installation. Therefore, various wireless sensor nodes have been developed to replace the conventional wired system. However, there remain lots of issues to be resolved such as power supply, data loss, data security, etc. In this study, smart distributed sensor node (SDSN) was developed to measure vibration data. The SDSN is basically timely synchronized one-channel data acquisition system. It consists of its local time clock with high accuracy and SD memory card or local data storage. It is designed for temporal measurement, not long-term monitoring, since it can operate several hours using embedded batteries. Laboratoy tests were carried to verify the performance of the developed SDSN compared with conventional wired sensors. Several application examples for large civil infrastructure were also suggested.
본 논문에서는 건축물의 실시간 피드백 진동제어를 위한 기초연구로써, 자체 기술력을 바탕으로 개발된 무선 가속도센서 시스템 및 프로토타입 (Prototype) AMD 시스템을 결합하여 피드백 진동제어 시스템을 구성하고, 모형 건축물을 대상으로 구성된 제어시스템의 기초성능을 평가하고자 하였다. 이를 위하여 본 논문에서는 우선 MEMS 센서 소자 및 블루투스 통신 모듈 기반의 무선 가속도 센서 유닛, 실시간 가속도 응답획득 및 제어법칙에 근거한 제어출력을 구현하도록 구성한 운영프로그램 등을 개발하였다. 또한 AC 서보모터를 이용해 기동되도록 설계한 프로토타입 AMD 및 모터 드라이버 시스템을 구성하였다. 마지막으로 이를 이용해 실시간 피드백 진동제어 시스템을 구성하였고, 2층 모형 건축물을 대상으로 실험실 규모의 진동제어 실험을 수행하여 목적된 구조물의 진동저감 효과를 정량적으로 분석하였다. 실험의 결과, 모형 구조물의 1차 및 2차 공진주파수 그리고 랜덤주파수 등의 실험조건에서 명확한 진동저감의 효과를 확인할 수 있었으며, 종국적으로 본 논문에서 개발한 무선 가속도센서 시스템 및 AMD 시스템이 향후 여타 구조물의 진동제어를 위한 효과적인 수단으로 응용될 수 있는 가능성을 확인하였다.
본 논문에서는 무선 센서 네트워크를 이용한 피드백 진동제어 시스템을 구성하고, 모형 구조물을 대상으로 구성된 시스템의 진동제어효과를 실험적으로 검증하고자 하였다. 이를 위하여 본 논문에서는 블루투스 기반의 무선 I/O 센서 시스템과 스마트 재료를 사용한 전단형 MR 댐퍼를 개발하고, 또한 일정한 크기의 정현파형을 발생시키는 가진기 및 모형 단순보 구조물을 이용하여 피드백 진동제어 시스템의 실험?V을 구성하였다. 진동제어 실험은 가진기를 이용해 보의 1/4 등분점에서 일정하게 가진한 상태에서, 보 중앙점에 수직방향으로 설치된 MR 댐퍼를 이용해 진동을 제어하였으며, 보의 2/4 등분점에서의 가속도 응답을 획득하여 제어효과를 평가하였다. 이때, 제어명령은 보 중앙점에 무선 I/O 센서 노드를 설치하고, 여기서 획득된 가속도 응답이 일정 크기 이상일 경우에 설정된 범위의 전압신호를 MR 댐퍼로 출력하도록 설정하였다. 최종적으로 본 논문에서 구성된 무선 센서 네트워크 기반의 실시간 피드백 진동제어 시스템은 비록 제한적인 명령 체계에서 검증되었지만, 실시간적으로 목적된 제어명령의 발생시킴으로써 구조물의 진동을 효과적으로 감소시키는 것을 확인하였고, 추후 다양한 준능동 제어 알고리즘을 적용한 구조적 응답제어시스템으로의 활용 가능성을 제시하였다.