검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : There has been increasing interest in South Korea on warm-mix asphalt (WMA) and cold-mix asphalt (CMA) technologies that allow production of asphalt pavement mixtures at comparatively lower temperatures than those of hot-mix asphalt (HMA) for use in pavement engineering. This study aims to evaluate the feasibility of replacing HMA pavement with WMA pavement with the goal of reducing CO2 emissions associated with asphalt production for road construction. METHODS : Changes in the dynamic modulus characteristics of WMA and HMA according to short-term and long-term aging were evaluated. In addition, the effects of water damage were evaluated for short- and long-term aging stages. RESULTS : For WMA, in the process of mixing and short-term aging, early-age dynamic modulus decreased owing to low temperature and reduced short-term aging (STA) time. This could result in early damage to the asphalt pavement depending on the applied traffic load and environmental load. CONCLUSIONS : Mastercurves of the dynamic modulus were used for comparative analysis of WMA and HMA. Compared to the dynamic modulus after STA of HMA, the estimated aging time determined by experiments for WMA to achieve the required stiffness was more than 48 hours, which is equiva-lent to approximately 4 to 5 years real service life when converted. It is considered that further studies are needed for performance optimization to achieve early-age performance of the asphalt mixes.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was conducted to evaluate the physical properties of the RAP 50 asphalt mixture containing polymer modified rejuvenator and warm-mix additive to improve the recycling rate of RAP and reduce CO2 emission. METHODS : Mix design of Polymer Modified Warm-mix Asphalt Mixture(RAP 50), and Hot Mix Asphalt Mixture(RAP 30) were produced and the properties of asphalt mixture such as Marshall Stability, ITS, Deformation Strength, TSR, and Dynamic Stability were compared between the two asphalt mixtures. RESULTS : The RAP 50 asphalt mixture showed superior or similar performances compared to the RAP 30 asphalt mixture in all the tests conducted. The results of the Marshall stability and dynamic stability in particular were 13,045N and 3,826 pass/mm, which were 11.37% and 76.7% greater than the RAP 30 asphalt mixture, which indicated that high plastic deformation resistance may be expected. CONCLUSIONS : The results obtained from laboratory tests on the two types of mixtures indicated that the use of polymer modified rejuvenator and warm-mix additive not only allows to increase the proportion of RAP but also improves its properties under lower temperature condition than RAP 30 asphalt mixture. Additionally, it was confirmed that plastic deformation resistance was high and moisture resistance and crack resistance were improved for a RAP 50 asphalt mixture.
        4,000원
        9.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Owing to industrial development, the occurrence of continuous environmental damage such as abnormal weather is accelerating because of a rapid increase in carbon emissions. Therefore, various efforts are expended worldwide to realize a low-carbon ecofriendly society. In the construction industry, various efforts have been realized to reduce environmental pollution such as greenhouse gas emissions, for example by introducing eco-friendly materials and reducing industrial waste. In this study, an asphalt pavement technology that can reduce production and construction temperatures by more than 60 °C is developed to reduce the amount of carbon generated in the asphalt industry. METHODS : The performance of a half-warm asphalt binder developed using thermoplastic elastomers and low-temperature additives was assessed. In addition, the change in the quality of a mixture due to the use of the half-warm asphalt binder was evaluated. RESULTS : As the amount of thermoplastic elastomer used increases, the performance grade of the asphalt binder increases as well. When 3% or more of the elastomer is incorporated, the target performance grade of the asphalt binder is satisfied. In addition, by incorporating the thermoplastic elastomer and a low-temperature additive, the overall moisture and rutting resistance increased even at relatively low production and compaction temperatures. CONCLUSIONS : Additional measures to stabilize quality and improve economic feasibility will present a new paradigm for investigations into eco-friendly asphalt concrete pavements.
        4,000원
        15.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study was to reduce greenhouse gases and prevent potholes on roads by evaluating the performances of hot and warm mixed asphalt mixtures. METHODS : Quality tests were conducted using an appropriate aggregate ratio of the asphalt mixture. The tests for comparing the warm mixed asphalt mixture are the indirect tensile strength and toughness, Marshall stability and flow, tensile strength ratio, and dynamic immersion test. A performance evaluation was conducted using a mixture that satisfied the quality test results. A performance evaluation test was also conducted using the dynamic modulus and Hamburg wheel tracking test. To analyze the performance based on the amine content, the performance was compared with that of a hot mixed asphalt mixture. RESULTS : All tests for the mixture results satisfied the standard values. The optimal amine content was analyzed through the high and low frequencies of the dynamic modulus test results and stripping inflection point with the final rut depth of the Hamburg wheel tracking test. The dynamic modulus test results demonstrated better crack resistance and plastic deformation when a high amine content ratio was used. The Hamburg wheel-tracking test showed water resistance and plastic deformation resistance. The test results of the Hamburg wheel tracking indicated better deformation resistance and water resistance when a high amine content ratio was used. CONCLUSIONS : The plastic deformation and crack resistance increased with an increase in amine content. Analysis of the comprehensive test revealed that the optimal amine content was between that of additives B(50%) and C(65%). Tests with a granular amine content are planned to confirm the specific components. Also planned are a simplified viscoelastic continuum damage test and a semicircular bending test to evaluate the performance better.
        4,000원
        16.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study compared the performance evaluation of a hot mix asphalt (HMA) and asphalt mixture of a warm-antistrip agent. METHODS : A mix design applying Korean standards was conducted to evaluate the performance evaluation. Thereafter, the quality standard evaluation of the asphalt mixture produced was conducted, and if all quality standards were satisfied, a performance evaluation was conducted. Types of performance evaluation included the Hamburg wheel tracking test and dynamic modulus test. RESULTS : As a result of the Hamburg wheel tracking test, the asphalt mixture with a warm-antistrip agent obtained a lower sedimentation value at 10000 times and 20000 times. This result is considered to have higher plastic deformation resistance of the asphalt mixture with a Warm-antistrip agent than HMA. The U.S. Department of Transportation stipulates that plastic deformation resistance is excellent if the asphalt mixture does not exceed 20,000 times the precipitate of 20 mm. Therefore, we confirmed that the plastic deformation resistance of the asphalt mixture with a warm-antistrip agent was excellent. Additionally, the master curve was analyzed by synthesizing the results of the dynamic modulus test. When analyzing the low load cycle at the bottom left of the master curve, the dynamic modulus value of the master curve was higher in the asphalt mixture with a warm-antistrip agent than in the HMA. In addition, when analyzing the high load cycle part, the dynamic modulus of the HMA was measured to be higher than that of the asphalt mixture with a warm-antistrip agent. Accordingly, the resistance to fatigue cracking of the asphalt mixture with a warm-antistrip agent was considered superior to that of the HMA. CONCLUSIONS : As a result, we confirmed that the asphalt mixture with a warm-antistrip agent that satisfies the Korean quality standards had better plastic deformation and fatigue resistance for all performance evaluation tests conducted in this study than the HMA. However, since the Hamburg wheel tracking test did not significantly differ in the amount of sedimentation in the performance evaluation tests and the mixture using one additive was compared with HMA, studies on the effects of various additives containing warm-antistrip agents are required.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate an asphalt mixture via field application to utilize basalt aggregates produced on Jeju Island for a warm mix asphalt (WMA). METHODS : Using commercially available WMA additives, an indoor experiment is conducted on low- and high-void aggregates among basalt aggregates on Jeju Island. The physical properties of the WMA mixture are evaluated using one solid type and two liquid types of WMA additive. To evaluate the applicability of the WMA additives, air void, saturation, aggregate void, Marshall stability, flow number, indirect tensile strength, and toughness tests are performed. For the field application of WMA using basalt aggregates, three types of pavements (HMA, WMA-Solid, and WMA-liquid) are constructed. When applying the pavements in the field, an anti-stripping agent is incorporated to improve the water resistance while considering the characteristics of the basalt aggregate. Samples are acquired via plant and field coring to evaluate the properties of the materials applied in the field. RESULTS : In the indoor test for analyzing the applicability of the commercialized WMA additives to basalt aggregates, all tests except the indirect tensile strength test show results that satisfy the standards. All test results, including that from the indirect tensile strength test, satisfy the standard values in the test that uses the sample material obtained from the plant. Similarly, in the test with field cores, all test results satisfy the standard values. Therefore, the experimental value in the field application is generally higher than the test value in the indoor experiment. It is inferred that this is due to the difference between the basalt aggregates used in the indoor and field experiments, as well as the addition of the anti-stripping agent. CONCLUSIONS : Basalt aggregates produced on Jeju Island can be used for WMA pavements, as demonstrated via indoor experiments and field applications. However, owing to the characteristics of basalt aggregates, a method for improving water resistance should be considered, and tests to determine the indirect tensile strength should be performed using various basalt aggregates. In addition, because various basalt aggregates exist owing to the diverse geology characteristics of Jeju Island, they should be evaluated via more experiments and field applications.
        4,000원
        18.
        2018.05 구독 인증기관·개인회원 무료
        The warm recycling technology has been increasingly used in many countries due to the environmental and financial benefits. In this study, the rheological and fatigue performance evolutions of warm-mix recycled asphalt materials during the secondary service period were evaluated in two scales, mixture and fine aggregate matrix (FAM). A laboratory simulation method was proposed to produce warm-mix recycled asphalt binders with various long-term aging levels for the mixture and FAM tests. The dynamic shear rheometer temperature and frequency sweep test and time sweep test were conducted to characterize the rheological and fatigue behavior of FAMs, respectively. The rheological and fatigue properties of asphalt mixtures were measured by the dynamic modulus test and semi-circular bending test, respectively. Effects of aging levels and recycling plans on different pavement performance were investigated. Performance correlations between the mixture and FAM were finally investigated by the statistical method. It is found that the secondary long-term aging causes the continuous increase in the stiffness and decrease in the viscoelasticity level in each material scale, indicating the improvement of the rutting resistance and the reduction of the fatigue resistance. The warm mix asphalt technology plays a positive role in the fatigue performance with a loss of the rutting resistance. Using the styrene butadiene rubber latex can improve different pavement performance within the whole time-temperature domain. Good performance correlations between the mixture and FAM are developed, indicating that the FAM may be the critical material scale for evaluating the rheological and fatigue performance of warm-mix recycled asphalt pavements.
        19.
        2018.05 구독 인증기관·개인회원 무료
        Modified asphalt pavements are needed to resolve pavement distress problems like rutting, pot-hole and warm asphalt pavements are needed to solve energy saving, reduction of noxious gasses emission and early traffic opening. To present these two characteristics, we developed polymer-modified warm-mix asphalt binder and mixtures and evaluated their performance by optimizing polymer-modified warm-mix additive. As results, physical properties and rheological characteristics of polymer-modified warm-mix asphalt binder are similar to normal modified binder. And we confirmed that polymer-modified warm-mix asphalt mixtures satisfied quality standard of Ministry of Land, Infrastructure and Transport.
        20.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS: Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS: The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS: Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.
        4,200원
        1 2 3