A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
Zeolitic imidazolate frameworks (ZIFs) along with carbon nanofibers and polyaniline composite have been explored as an electrochemical sensing platform in nitrite measurement at trace level. Owing to their topology, high surface area and porous structure, these metal–organic frameworks (MOFs) find widespread utility in different application domains. Nitrites are widely used as preservatives in dairy, meat products, and packaged food stuffs. They form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. These ZIF-based MOFs along with carbon nanofibers and polyaniline have emerged as an efficient electrochemical sensing material. The composite has been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and BET surface area studies. The electrochemical performance of the composite has been evaluated by forming as a thin film of composite on the surface of glassy carbon electrode and studying its impedance as well as electrochemical sensing behavior. The sensor exhibited good analytical response in nitrite measurement with a limit of detection of 8.1 μM. The developed sensing platform has been successfully applied to quantify the nitrite levels from water samples. The results obtained are in good agreement with the results of standard protocol.
An environmentally friendly and low-cost chitosan-containing polysaccharide (CP) composite ZIF-8/CP was designed and prepared based on the difficulty of separating the traditional adsorbent from the water phase. ZIF-8/CP was synthesized through in-situ growth approach. The physical, chemical and structure properties of ZIF-8/CP were determined through a series of characterization methods, including SEM, FT-IR and PXRD. The effects of touch time, pH, temperature, and coexisting ions on adsorption were assessed. In addition, kinetics, isotherms of adsorption and thermodynamics were examined. The data of isotherms for adsorption indicated that the adsorption of ZIF-8/CP on MG was similar to the Langmuir model, with a maximum adsorption capacity of 1428.57 mg/g. Moreover, the kinetic parameters were consistent with the pseudo- 2nd-order equation. Thermodynamic studies (ΔG < 0, ΔH > 0) demonstrated a heat-absorbing and spontaneous adsorption process. Our study reveals that ZIF-8/CP has good adsorption properties and environmental properties.
Core–shell ZIFs wrapped CuO hybrid materials (CuO@ZIF-67(Co)) were designed, synthesized, characterized, and employed as peroxymonosulfate (PMS) activators to degrade methylene blue (MB). It demonstrated outstanding catalytic activity on account of the unique structure and the synergistic effect between CuO cores and ZIF-67(Co) shells, resulting in complete degradation of MB (10 mg/L) in 1 min. Reactive oxygen species (ROSs) research showed that both SO4 − and OH were responsible for the removal of MB. The synergistic activation mechanisms in the CuO@ZIF-67(Co)/PMS system were investigated, which mainly involved the effective electron transfer of CuO and ZIF-67(Co) for accelerating the cycle of CuII/ CuI and CoIII/ CoII. This study broadens the application of MOF-derived materials for wastewater treatment.
본 연구에서는 PEBAX 2533에 합성된 PEI-GO@ZIF-8의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/PEI-GO@ZIF-8 혼합막의 N2 투과도는 PEI-GO@ZIF-8 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO@ZIF-8 함량에 따라 다른 경향을 보였는데 순수 PEBAX 막에서 PEI-GO@ZIF-8 0.1 wt%까지 CO2 투과도는 증가하다가 그 이후의 함량에서는 감소하였다. PEI-GO@ZIF-8 0.1 wt% 혼합막은 CO2 투과도 221.9 Barrer, CO2/N2 선택도는 60.0으로, 제조된 혼합막들 중 CO2 투과도와 CO2/N2 선택도가 향상되어 가장 높은 투과 특성을 보였고 Robeson upper-bound에 도달하는 결과를 얻었다. 이는 충진물이 PEBAX 내에 고루 분산되면서 CO2와 친화적인 상호작용을 하는 GO의 -COOH, -O-, -OH 작용기와 PEI에 결합된 아민기 그리고 CO2에 대해 gate-opening 현상이 일어나는 ZIF-8의 영 향 때문이다.
본 연구에서는 zeolitic imidazolate framework-9 (ZIF-9)을 합성하고 poly(ether-b-amide)-1657 (Pebax-1657) 내에 함량을 달리하여 Pebax/ZIF-9 혼합막을 제조한 다음 단일기체 (N2, CO2)를 투과하여 혼합막에 대한 기체 투과 특성을 조사하 였다. 순수 Pebax 막 내에 혼입되는 ZIF-9 함량이 증가함에 따라 N2 투과도는 점차 감소하고, CO2 투과도는 Pebax/ZIF-9 3 wt% 혼합막까지 증가하다가 그 이후의 함량에서는 감소하였다. 그리고 혼합막들 중 Pebax/ZIF-9 3 wt% 혼합막은 극성 기체 인 CO2에 대해 gate-opening 현상이 일어나면서 선택적으로 CO2를 받아들여 가장 높은 선택도 69.3을 보였다. 또한 CO2 투 과도와 CO2/N2 선택도가 모두 증가하여 Robeson upper-bound에 가장 근접하는 결과를 얻었다.