Recently, research on MAX phase materials has been actively conducted. M of MAX phase is made of early transition metal element, A is A-group (IIIA or IVA) element, and X is Carbon or Nitrogen. It has the chemical formula of MnAXn-1, and is called the 211, 312, and 413 groups according to the indices(n=1,2,3). MXene material is characterized by having a layered structure of 2D structure like graphene by etching the element corresponding to A-gruop in the MAX phase. So far, MXene materials have been reported to be applied in various fields. In particular, research is being actively conducted as anode material for Li secondary batteries, electromagnetic wave shielding material, and hydrogen storage alloy material. In the pulse energization active sintering method, the surface of the powder particles is cleaned and activated more easily than the conventional electrical sintering process and material transfers at both the macro and micro level, so that a high-quality sintered body can be obtained at low temperature and fast time. In this study, the MAX phase was synthesized in a short time by using a pulse current active sintering apparatus, and the MXene material was prepared from the synthesized MAX phase and the structure was analyzed.
Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.
Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC–Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 μm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.
Porous Fe-Cu-C alloy was sintered by Pulsed Current Activated Sintering(PCAS) method within 10 min from horizontal ball mill mixture. The relative density of Fe-20wt.%Cu-0.8wt.%C alloy fabricated by PCAS method was 91%. The average hardness of the Fe-20wt.%Cu-0.8wt.%C alloy was HRB 92. The phase analysis, microstructure and composition information of the sintered alloy were investigated by using XRD, FESEM, EDAX.
Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are 700oC and 80oC/min, respectively. The heating directly progresses up to 700oC with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of 700oC without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to 700oC.
The aim of this study was to investigate microstructures and mechanical properties of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composite fabricated by high energy mechanical milling (HEMM) and pulse current activated sintering (PCAS). Grain growth of the mechanically milled powder was prevented by performing PCAS. The principal advantages of calcium phosphate materials include: similarity in composition to the bone mineral, bioactivity, osteoconductivity and ability to form a uniquely strong interface with bone. The hardness and wear resistance property of nano-sized Ti-35 wt.%Nb-7 wt.%Zr-10 wt.%CPP composites increased with increasing milling time because of decreased grain-size of sintered composites.
The phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The -Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.
Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/, 630 kg/, respectively.
The present study was focused on the synthesis of a dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of composite material sintered at showed about 98% of theoretical density. The composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of composite material were about 140 Hv and about 45% IACS, respectively.
In the present study, the focus is on the analysis of the effect of the mold dimensions on the temperature distribution of a die during plasma activated sintering. The temperature distribution of a cylindrical mold with various dimensions was measured using K-type thermocouples. The temperature homogeneity of the die was studied based on the direction and dimensions of the die. A temperature gradient existed in the radial direction of the die during the plasma activated sintering. Also, the magnitude of the temperature gradient was increased with increasing sintering temperature. In the longitudinal direction, however, there was no temperature gradient. The temperature gradient of the die in the radial direction strongly depended on a ratio of die volume to punch area
In the present study, the effect of Ni content on densification and grain growth in Ni doped W compacts was investigated by using the dilatometric analysis. The Ni-doped W compacts with various amount of Ni activator from 0.02 to 0.4 wt% were sintered in hydrogen atmosphere up to 140. As the amount of Ni and heating rates, the Ni-doped W compacts show a greatly different dilatometric behavior during the sintering. The sintered specimen was densified over 98% of theoretical density by adding only 0.06 wt% Wi in sub-micron W powder and the appropriate heating rate. It was also observed that the microstructure development strongly depended on the change of the Ni amount. In addition, it was found that the critical content of Ni showing large grain growth in microstructure was below 0.1 wt%.
The mechanism of activated sintering of tungsten powder was discussed in terms of diffusion and segregation of activator atoms at W grain boundaries. Shrinkage behaviours of W-0.2wt.% Ni, W-0.2wt.% Cu or pure W powder compacts during sintering at low temperatures of 900~ were investigated. It was found that the Cu additive inhibits sintering process causing lower densification than pure W compact while remarkable shrinkage occurred in the Ni added W powder. Such contrary effect was explained by comparing self diffusion processes along Ni or Cu segregated W boundaries in which Ni segregants enhance but Cu atoms retard the migration of W atoms at W boundaries.