Background: Prolonged use of computers and mobile devices has contributed to postural abnormalities such as Rounded Shoulder Posture (RSP), which is characterized by muscle imbalances that can lead to pain and functional limitations. Correcting these imbalances through targeted stretching and strengthening exercises was expected to help improve postural alignment and muscle function. Objectives: This study aimed to investigate the effects of a six-week integrated exercise program targeting the pectoralis minor (PM), upper trapezius (UT), and lower trapezius (LT) on postural alignment and muscle activation in female adults with RSP. Design: Single-group pre-post test study. Methods: Eighteen female university students (aged 20–22 years) with RSP participated in a six-week intervention consisting of PM stretching, UT stretching, and LT strengthening exercises. RSP severity was assessed using acromion-to-ground distance, PM length was measured with a caliper, and surface electromyography (sEMG) was used to evaluate UT and LT muscle activity. Normality was verified using the Shapiro-Wilk test, and paired t-tests were conducted for statistical analysis (α=0.05). Results: After the intervention, significant improvements were observed in all measured variables. Acromion-to-ground distance decreased (P<0.001), PM length increased (P<0.001), UT activation decreased (P<0.01), and LT activation increased (P<0.01). Conclusion: The six-week integrated exercise program effectively improved postural alignment and muscle activation in women with RSP by addressing muscle shortening, overactivity, and weakness. These findings suggest that combined stretching and strengthening exercises can serve as a practical and effective approach for RSP correction. Future studies with longer durations and diverse populations are recommended to further validate these results and enhance clinical applicability.
도로의 기하선형 정보는 도로 설계, 유지보수, 그리고 안전성 평가에서 핵심적인 요소이다. 특히 종단경사와 곡선반경은 차량의 속도 변화, 제동 거리, 원심력 등에 영향을 미쳐 사고 위험을 높이는 요인으로 작용한다. 따라서 도로 유지관리 측면에서 도로의 기하선형 정보를 정밀하게 측정하고 관리하는 것은 필수적이다(Park et al., 2008). 국토교통부에서는 노드·링크(Node·Link)를 통해 국내 도로망 데이터 통합 시스템을 구축하고 있다. 노드·링크는 교차로, 도로의 시종점, 행정경계 등으로 도로구간을 구분하는 시스템으로, 도로구간을 의미하는 각 링크에는 도로등급, 차로수, 제한속도, 연장 등 다양한 도로특성정보가 입력되어 있으나 곡선반경, 종단경사와 같은 도로의 기하학적 구조 데이터는 포함되어 있지 않다(MOLIT, 2025). 또한, 각 지자체는 “도로대장정보시스템”을 통해 도로의 시설물 및 기하구조를 통합 관리하게 되어있으나, 시스템화 현황이 저조할 뿐만 아니라 연구 등의 목적으로 접근이 제한된다(LX, 2025). 이와 같이, 도로의 기하구조는 중요도에 비해 데이터 관리 부족하며 접근성이 낮다. 따라서 본 연구에서는 노드·링크 시스템에서 제공하는 평면선형 데이터(.shp 파일)를 활용하여 곡선반경과 종단경사를 산출하고 도로 구간별 기하학적 구조 정보를 추정하였다. 이는 향후 도로 주행특성, 안전관리 등 다양한 분야의 연구에 기초자료로 활용될 수 있으며, 도로 안전관리 측면에서 위험구간 판단 근거로 활용할 수 있을 것으로 기대된다.
Efforts have been extensively undertaken to tackle overheating problems in advanced electronic devices characterized by high performance and integration levels. Thermal interface materials (TIMs) play a crucial role in connecting heat sources to heat sinks, facilitating efficient heat dissipation and thermal management. On the other hand, increasing the content of TIMs for high thermal conductivity often poses challenges such as poor dispersion and undesired heat flow pathways. This study aims to enhance the through-plane heat dissipation via the magnetic alignment of a hybrid filler system consisting of exfoliated graphite (EG) and boron nitride (BN). The EG acts as a distributed scaffold in the polymer matrix, while the BN component of the hybrid offers high thermal conductivity. Moreover, the magnetic alignment technique promotes unidirectional heat transfer pathways. The hybrid exhibited an impressive thermal conductivity of 1.44 W m− 1 K− 1 at filler contents of 30 wt. %, offering improved thermal management for advanced electronic devices.
This study identifies the possibility of alignment discrepancies during mortar firing when using inactive fuzes, which make it impossible to visually observe impact points. To address this issue, we studied a quality assurance method for Sight Alignment after firing. To establish a baseline, we analyzed the pre-firing Sight Alignment and the impact group status during firing for 00 mortars and 000 shells. Based on this analysis, we derived the alignment position information range after firing for 36 mortars, distinguishing between 68% and 95% confidence interval. Finally, considering data characteristics, inspection time requirements, and non-conforming data, we selected the Sight Alignment range after firing based on the 95% confidence interval. This study is expected to contribute to the development of quality assurance methods for munitions by serving as an example of quality assurance in the mass production stage of mortars.
In this study, two alignment methods were used to create a Fringe-Field Switching (FFS) mode liquid crystal device using an organic thin film (polyimide: PI) as an alignment layer. In addition, the electro-optical (EO) characteristics of the liquid crystal device manufactured in this way were investigated to evaluate the feasibility of mass production application of the technology. In general, the photo-alignment method using unpolarized ultraviolet rays can obtain a relatively low pretilt angle, so a liquid crystal device in FFS mode, which is a driving mode of the liquid crystal device that reflects the characteristics of liquid crystal alignment, was manufactured, and the liquid crystal has a high reactivity with the alignment film. Considering this, nematic liquid crystal (NLC) was used. In addition, in order to improve the misalignment, it was observed whether more stable orientation occurred by irradiating ultraviolet rays for an additional 1 to 3 hours in the aligned state. As a result of the experiment, it was found that NLC alignment occurs through a photodecomposition reaction caused by unpolarized UV irradiation oblique to the PI surface. In addition to the existing orientation method, UV irradiation was used to achieve a more stable orientation state and stable V-T curve and response characteristics. With liquid crystal alignment completed, more stable orientation characteristics and EO characteristics at the mass production level were obtained through additional UV irradiation for 3 hours. This method can further stabilize the orientation stability caused by existing UV irradiation through an additional process.
We investigated the cause of liquid crystal alignment when an ion beam is irradiated to the liquid crystal(LC) alignment film for liquid crystal alignment. We investigated liquid crystal alignment in response to changes in ion beam (IB) incident angle and electro-optical (EO) properties of twisted nematic (TN)-liquid crystal displays (LCDs) on polyimide (PI) surface. X-ray photoelectron spectroscopy(XPS) analysis showed that the C=O chemical bond strength decreased with changes in the IB incident angle, while the C-O chemical bond strength increased. Therefore, it was found that the dipole-dipole interaction between C-O chemical bonds and LC molecules has a chemical ordering effect. Good and uniform alignment of nematic LC was observed on the liquid crystal alignment layer surface by IB irradiation, and good EO properties of IB aligned TN-LCD were achieved on the liquid crystal alignment layer surface.
Background: Sleep accounts for approximately one-third of a person’s lifetime. It is a relaxing activity that relieves mental and physical fatigue. Pillows of different sizes, shapes, and materials have been designed to improve sleep quality by achieving an optimal sleep posture. Objects: This study aimed to determine which pillow provides the most comfortable and supports the head and neck during sleep, which may enhance sleep quality. Methods: Twenty-eight healthy adults (19 males and 9 females) with an average age of 29 years participated in this cross-sectional study. This experiment was conducted while the participants laid down for 5 minutes in four different pillow conditions: (1) no pillow (NP), (2) neck support foam pillow (NSFP), (3) standard microfiber filled pillow (SFP), and (4) hybrid foam pillow (HFP). The head-neck peak pressure, cranio-vertebral angle in supine (CVAs), cranio-horizontal angle in supine (CHAs), chin-sternum distance (CSD), and muscle tone of sternocleidomastoid were analyzed using one-way repeated measures analysis of variance (ANOVA). The significance level was set at p < 0.05. Results: The head-neck peak pressure was the highest in the NSFP condition, followed by the NP, SFP, and HFP conditions. The CVAs, CHAs, and CSD of the SFP were lower than those of the other pillows. Muscle tone was the highest in the NP condition, followed by the of NSFP, HFP, and SFP conditions. The participants subjective comfort level in both the supine and side-lying postures was highest in the HFP condition, followed by the SFP and NSFP conditions. Conclusion: This study can be used to establish the importance of pillow selection for highquality sleep. The results of this study, suggest that a hybrid pillow with a good supportive core and appropriate fluffiness can maintain comfort and correct cervical spine alignment during sleep.
Background: There is a lack of research on sling neurac exercise interventions for craniovertebral angle (CVA), head rotation angle, range of motion (ROM), and neck postural alignment in adults with forward head posture Objectives: To investigate the Immediate effects of sling neurac exercise on craniosacral angulation, ROM, and neck postural alignment in adults with forward head posture. Design: Quaxi-experimental study. Methods: Fifty young adults in their 20s were divided into a sling neurac exercise group (SNEG) and a control group (CG). SNEG conducted sling neurac exercise intervention for one day, and CG did not implement intervention. Craniosacral angulation, ROM, and postural alignment before and after exercise was evaluated for each group. Results: In the sling neurac exercise group (SNEG), CVA, cranial rotation angle (CRA), ROM, and postural alignment improved significantly after intervention (all P<.01). There were no significant differences in the control group (CG) (all P>.05). After the intervention, there were significant differences between the groups in craniosacral angulation, ROM, and postural alignment (all P<.01). Conclusion: The Sling neurac exercise can significantly improve CVA, CRA, ROM, and postural alignment. Therefore, it is suggested to consider sling neurac exercise as an intervention.
Background: ErigoPro enables acute stroke patients to carry out stable weight-bearing training with gradual verticalization. Study on the effectiveness of robotic assisted treatment equipment for chronic patients is insufficient. Objectives: This study aims to investigate the effect of dynamic vertical posture training using ErigoPro on trunk alignment and balance in chronic stroke patients. Design: Randomized controlled trial. Methods: The subjects of this study were 30 patients were randomly assigned to a study group of 15 patients and a control group of 15 patients. The study intervention was carried out for 50 minutes per day consisting of 30 minutes of general neuro-physiotherapy and 20 minutes of ErogoPro training, 3 times a week for 8 weeks. Results: The study group showed difference in trunk inclination (P<.05), kyphotic angle (P<.05), lateral deviation of the spine (P<.05), thoracic angle (P<.01), timed up and go test (P<.01), Berg balance score (P<.01). There was a significant difference between the groups in the trunk inclination (P<.05), timed up and go test (P<.01), Berg balance score (P<.05). Conclusion: It could be seen that the treatment combined with ErigoPro training for 8 weeks was effective in restoring trunk alignment and improving balance ability in chronic stroke patients.
Group identities, also known as social identities, have been established as measurable, stable, and behaviorally relevant constructs in marketing, psychology, and political science. According to research in political psychology, shared in-group identities can increase a voter’s support for an in-group political candidate.
Background: Pilates exercises are used for body shape correction because they can achieve correct posture alignment through spinal stabilization.
Objects: This study aimed to determine whether the use of reformers increases the effectiveness of Pilates core exercises on body alignment in standing.
Methods: The study included 30 women without known diagnoses of musculoskeletal and neurological disorders or cancer. Those who had taken more than 10 Pilates lessons were excluded. The participants were randomly assigned to either the reformer exercise group or the mat exercise group, and interventional Pilates exercises were performed for 60 minutes a day, three times a week, for a total of 8 weeks. Ten movements of the reformer and mat Pilates core exercise programs were included. Exbody® 9100 MOMI musculoskeletal analysis equipment (Exbody Inc.) was used to assess the alignment of the standing posture in the frontal plane.
Results: As a result of comparing the differences within and between the groups before and after the intervention using the two-way mixed analysis of variance test, height differences in the head, pelvis, left and right, shoulders, scapulas, knees, and ankles in the frontal plane after the intervention were found in both groups. For example, the left-right symmetry of the body alignment in the standing posture was significantly improved within each group (p < 0.05). However, no significant difference was found between the groups (p > 0.05).
Conclusion: Both the reformer and mat Pilates core exercises were effective for standing posture alignment, which has clinical significance. If an exercise program is developed based on the analysis of movements necessary for posture improvement and the target muscles to be strengthened, the same effect can be achieved only with mat exercise without using the reformer equipment at the beginner stage.
Thermal management is significant to maintain the reliability and durability of electronic devices. Heat can be dissipated using thermal interface materials (TIMs) comprised of thermally conductive polymers and fillers. Furthermore, it is important to enhance the thermal conductivity of TIMs through the formation of a heat transfer pathway. This paper reports a polymer composite containing vertically aligned electrochemically exfoliated graphite (EEG). We modify the EEG via edge selective oxidation to decorate the surface with iron oxides and enhance the dispersibility of EEG in polymer resin. During the heat treatment and curing process, a magnetic field is applied to the polymer composites to align the iron oxide decorated EEG. The resulting polymer composite containing 25 wt% of filler has a remarkable thermal conductivity of 1.10 W m− 1 K− 1 after magnetic orientation. These results demonstrate that TIM can be designed with a small amount of filler by magnetic alignment to form an efficient heat transfer pathway.